
Synthesis of Interpretable and Obfuscatory Behaviors
in Human-Aware AI Systems

by

Anagha Kulkarni

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved March 2021 by the
Graduate Supervisory Committee:

Subbarao Kambhamapti, Chair
Ece Kamar

David E. Smith
Siddharth Srivastava

Yu Zhang

ARIZONA STATE UNIVERSITY

May 2021

ABSTRACT

In settings where a human and an embodied AI (artificially intelligent) agent coexist,

the AI agent has to be capable of reasoning with the human’s preconceived notions

about the environment as well as with the human’s perception limitations. In ad-

dition, it should be capable of communicating intentions and objectives effectively

to the human-in-the-loop. While acting in the presence of human observers, the AI

agent can synthesize interpretable behaviors like explicable, legible, and assistive be-

haviors by accounting for the human’s mental model (inclusive of her sensor model)

in its reasoning process. This thesis will study different behavior synthesis algorithms

which focus on improving the interpretability of the agent’s behavior in the presence

of a human observer. Further, this thesis will study how environment redesign strate-

gies can be leveraged to improve the overall interpretability of the agent’s behavior.

At times, the agent’s environment may also consist of purely adversarial entities or

mixed entities (i.e. adversarial as well as cooperative entities), that are trying to

infer information from the AI agent’s behavior. In such settings, it is crucial for the

agent to exhibit obfuscatory behavior that prevents sensitive information from falling

into the hands of the adversarial entities. This thesis will show that it is possible

to synthesize interpretable as well as obfuscatory behaviors using a single underlying

algorithmic framework.

i

To my late father, Pradeep Kulkarni,

whose love continues to be a pillar of stability,

and to my mother, Seema Kulkarni,

whose kindness provides me constant warmth

ii

ACKNOWLEDGEMENTS

A number of people have helped me make this dissertation possible. First and

foremost, I would like to thank my advisor Prof. Subbarao Kambhampati. This work

would not have been possible without his support and guidance. He has supported

me through my highs and especially through my lows. I admire his ability to draw

deep insights from problems and to simplify them by hacking away at fluff. I also

admire the passion and energy with which Prof. Kambhampati conducts himself.

He is a kind of an advisor who will always make time for his students despite his

busy schedule – be it weekends or late evenings. I consider myself lucky to have had

somebody as energetic and dynamic as him as my advisor. I am also very thankful

to him for the various opportunities he has granted me, such as encouraging me to

present a conference tutorial alongside him and encouraging me to contribute to a

book on my research work. I will be forever grateful to him for the time and energy

he has invested in me.

I would also like to thank Prof. Siddharth Srivastava for his constant guidance

and patience. I have spent a numerous hours refining my half-baked ideas and scrib-

bling them on his wall (which doubled as a whiteboard). I admire the regularity and

discipline with which he conducted our one-on-one meetings. I thank him for unknow-

ingly instilling those values in me. I interacted most with Prof. Yu Zhang during the

first couple years of my PhD. It was a great help to have him as a sounding board

to discuss ideas. While I collaborated with him, I got to work on quite a few fun

robot demonstration projects, which made the initial part of my Ph.D. very exciting.

I am thankful to him for his constant guidance during those years. I am happy to

have gotten a chance to collaborate with Dr. David E. Smith. I admire his ability

to look at a problem and bring out a cogent, generalized perspective to it. All of his

visits to ASU have lead to interesting discussions, which have evolved into interesting

iii

works. I am also thankful to Dr. Smith for sending us some amazing holiday snacks

including his signature dried persimmons over the past few Decembers. Finally, it

has been helpful to have a role model like Dr. Ece Kamar to learn and grow from.

I first met her at a women’s mentoring program at AAAI 2020. Even in this day

and age, women are still a minority in many STEM Ph.D. programs and it is helpful

to have people like her who are willing to give back to the community by mentoring

young people.

Moreover, I have been lucky to have gotten a chance to work with many other

collaborators: Dr. Satya Gautam Vadlamudi who helped me get my bearings in the

lab when I was a new Ph.D. student, Dr. Sarah Keren whose guidance has been

invaluable, and who evolved from being a good collaborator to a good friend, Dr.

Matthew Klenk and Dr. Shiwali Mohan from Palo Alto Research Center (PARC)

who made me feel welcome at PARC during my 2018 summer internship. I would

also like to thank Prof. Satish Kumar Thittamaranahalli (T. K. Satish Kumar)

from University of Southern California for contributing to my journey. Without his

recommendation of getting in touch with Prof. Kambhampati for the Ph.D. program,

I wouldn’t have started this journey in the first place.

I would also like to thank all of my wonderful labmates, who have made this

journey a sweet and a memorable one. Sarath and Tathagata, specifically, have been

two of the best collaborators throughout my time at the lab – right from my first

project on explicable planning to the Imagine Cup competition in Seattle to the

tutorial presentation at a conference in my final year. Lydia, Sailik and Sachin have

been my constant companions throughout this journey, helping me become a better

version of myself. And Yantian who has helped me become a fitter version of myself.

Alberto, Zahra and Niharika who sat beside me in the lab, and made me look forward

to coming and working in the lab. Sriram, Utkarsh, Lin, Mudit, Karthik and Siddhant

iv

who have all made the lab a fun, energetic and enjoyable place.

Last but not the least, I would like to thank my family members for supporting me

throughout these past six years. I will be forever grateful to my partner and soulmate,

Rohan. Without his constant support and encouragement, I could not have made so

many of the paper deadlines. He has been there for me every step of this journey.

In fact, without his encouragement, I probably would not have embarked on this

journey in the first place. I am also grateful to my parents who have always put

my problems ahead of theirs and supported my decisions no matter what. It breaks

my heart to realize that my father is not here to see me graduate this year. Last

year throughout the COVID-19 lockdown, I used to have long conversations with him

about my impending graduation and future plans. I wish he was here to see me now,

I know he would have been proud of me. I am also thankful to my dear mother, who

has always strived to make sure I got the very best of everything. Without a second

thought to herself, she has always comforted me with her endless love and support.

And finally my younger brother, whom I have always looked up to and who inspires

me to be a better version of myself.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . xi

LIST OF FIGURES . xiii

CHAPTER

1 INTRODUCTION . 1

1.1 Thesis Overview . 3

2 BACKGROUND . 6

2.1 Preliminaries . 6

2.1.1 Planning . 6

2.1.2 Human-aware Planning . 7

2.1.3 Human’s Mental Model of the Robot Model. 8

2.2 Implicit Communication through Behavior . 10

2.2.1 Interpretable Behavior . 12

2.2.2 Obfuscatory Behavior . 14

3 PLANNING FOR EXPLICABLE BEHAVIOR . 15

3.1 Related Work . 19

3.2 Explicable Planning Problem . 20

3.3 Model-based Explicable Planning . 21

3.3.1 Explicability Distance . 23

3.3.2 Plan Generation . 25

3.3.3 Evaluation using Simulated Autonomous Car Domain 28

3.3.4 Evaluation using Robot based Delivery Domain 35

3.4 Model-Free Explicable Planning . 38

3.4.1 Problem Formulation . 38

3.4.2 Labeling . 39

vi

CHAPTER Page

3.4.3 Learning Approach . 39

3.4.4 Plan Generation . 40

3.5 Evaluation using Block Stacking Robot Domain 41

3.5.1 Domain Description . 43

3.5.2 Experimental Setup . 43

3.5.3 Results . 45

3.6 Concluding Remarks . 45

4 PLANNING FOR LEGIBLE BEHAVIOR . 47

4.1 Related Work . 48

4.2 Controlled Observability Planning Problem . 49

4.2.1 Observer’s Belief Space . 50

4.2.2 Complexity Analysis . 51

4.2.3 Computing Solutions to COPP variants 53

4.2.4 Variants of COPP . 56

4.3 Goal Legibility . 57

4.3.1 Computing Goal Legible Plans . 60

4.4 Plan Legibility . 61

4.4.1 Computing Plan Legible Plans . 62

4.5 Empirical Evaluation of COPP Problem Variants 64

4.5.1 Domains and Experimental Setup . 65

4.5.2 Results . 66

4.6 Concluding Remarks . 67

5 ENVIRONMENT DESIGN TO FACILITATE EXPLICABLE BEHAV-

IOR . 69

vii

CHAPTER Page

5.1 Related Work . 72

5.2 Background . 73

5.2.1 Environment Design . 74

5.3 Design for Explicability . 75

5.3.1 Design for a Single Explicable Problem . 76

5.3.2 Design for Multiple Explicable Problems 77

5.3.3 Longitudinal Impact on Explicable Behavior 78

5.4 Solution Methodology . 81

5.4.1 Search for Optimal Design . 82

5.4.2 Compilation for Most Explicable Plan . 83

5.5 Evaluation . 85

5.5.1 Demonstration . 85

5.5.2 Domain setup . 86

5.5.3 Performance on IPC domains . 87

5.5.4 Interplay Between Inexplicability Score and Plan Cost 90

5.6 Concluding Remarks . 98

6 PLANNING FOR OBFUSCATORY BEHAVIOR . 99

6.1 Related Work . 100

6.2 Goal Obfuscation . 101

6.2.1 Computing Goal Obfuscatory Plans . 103

6.3 Secure Goal Obfuscation . 104

6.3.1 Computing Secure Goal Obfuscatory Plans 105

6.4 Plan Obfuscation . 107

6.4.1 Computing Plan Obfuscating Plans . 107

viii

CHAPTER Page

6.5 Empirical Evaluation of COPP Problem Variants 109

6.5.1 Results . 109

6.6 Concluding Remarks . 127

7 PLANNING FOR SIMULTANEOUSLY OBFUSCATORY

AND LEGIBLE BEHAVIOR . 129

7.1 mo-copp . 132

7.1.1 mo-copp Solution . 136

7.2 mo-copp Plan Generation . 137

7.2.1 mo-copp as Integer Program . 137

7.2.2 Search Algorithm . 142

7.3 Empirical Evaluation of mo-copp Solutions . 146

7.3.1 Domain Setup . 147

7.4 Concluding Remarks . 151

8 PLANNING FOR ASSISTIVE BEHAVIOR . 153

8.1 Related Work . 157

8.2 ma-copp . 158

8.2.1 Robot Modeling of Human’s Belief Update 160

8.2.2 Formal Guidelines for a Proactive Assistant 160

8.3 Solution Methodology . 162

8.4 Evaluation . 165

8.4.1 Empirical Evaluation . 167

8.4.2 User Study . 170

8.5 Concluding Remarks . 174

9 CONCLUSION . 175

ix

CHAPTER Page

9.1 Summary . 175

9.2 Discussion and Future Work . 179

9.2.1 Landscape of Robot Behaviors . 179

9.2.2 Legibility via Projection-Aware Planning 180

9.2.3 Future Directions for Environment Design For Explicability . 180

9.2.4 Generalizing mo-copp Framework . 181

9.2.5 Generalizing ma-copp Framework . 182

9.2.6 Assumptions used in the Problem Settings 182

9.3 Takeaways . 184

REFERENCES . 186

x

LIST OF TABLES

Table Page

3.1 The Questionnaire Used in the Human Study for Car Domain, and the

Tally of Answers given by Participants. For the Last Two Questions,

the Participants Were Asked to Choose One of the Two Options, and

the “yes" Tally Corresponds to the First Answer, “no" To the Second. . 31

3.2 Accuracy for Car and Delivery Domain. 32

4.1 Empirical Evaluation for the Two COPP Problem Variants Using the

Optimization Presented in Algorithm 3 Versus the Optimal Plan So-

lution (Opt Column) to the True Goal. We Report the Average Time

(in Seconds) and the Average Plan Length. 65

5.1 We Report the Impact of Design Modifications on Inexplicability Score,

Plan Cost and Total Cost. We Also Report the Average and Standard

Deviation Values for the Three Optimization Terms in the Objective

Function along with the Run Time. 88

6.1 Empirical Evaluation for Goal Obfuscation and Plan Obfuscation Solved

Using the Optimization Presented in Algorithm 3 Versus the Optimal

Plan Solution (Opt Column) to the True Goal. We Report the Average

Time (in Seconds) and the Average Plan Length. 110

6.2 Empirical Evaluation to Report the Average Time (in Seconds) for

Different Versions of k-ambiguous Algorithms. k-amb w/ and w/o Do

Not Use BPS and Report Time with and Without the Additional Post-

processing Step. k-amb Secure Uses BPS to Provide Robust Solutions

to Replay Attack. 111

xi

Table Page

6.3 Empirical Evaluation for Different Types of Observation Models. We

Report Average Percentage of Obfuscated Plan Length, and the Aver-

age and Standard Deviation of Time Taken (in Seconds) to Compute

the Obfuscated Plan. 125

6.4 Empirical Evaluation to Explore the Cost Versus Obfuscation Trade-

off. We Examine the Extent of Obfuscation for Different Cost-bounds.

We Report Average Percentage of Obfuscated Plan Length. 125

6.5 Empirical Evaluation to Explore Differences in Optimal Plan to Goal

and Obfuscated Plan to Goal. We Report Average Plan Cost and

Average, Standard Deviation of Time Taken in Seconds to Compute

the Solution to the Goal. 126

8.1 Empirical Evaluation Results for Two Domains with for Different α

Values (Shows Human Prioritizing Between Processing Load Vs Task

Load). 170

xii

LIST OF FIGURES

Figure Page

1.1 An Overview of the Thesis. 3

2.1 Illustration of Differences Between the Robot’s Model and the Human’s

Mental Model of the Robot in a Urban Search and Rescue Domain. . . . 8

2.2 Illustration of the Impact of Human’s Noisy Sensor Model on Human’s

Mental Model of the Robot in a Urban Search and Rescue Domain. . . . 9

2.3 Illustration of Implicit Communication for Cooperative as Well as Ad-

versarial Observers. Through Behavior, the Robot Can Communicate

Its Goal of Picking up the Rightmost Medkit to the Cooperative Ob-

server in the Leftmost Sub-figure, While It Can Hide Its Intentions

from the Adversarial Observer in the Rightmost Sub-figure by Taking

an Ambiguous Path. 12

2.4 Illustration to Demonstrate Improvement in Explicability of the Robot’s

Behavior after Environment Design. 13

3.1 Schematic Diagram of the Setting: Here a Regression Model Called

Explicability Distance Is Learned to Fit Plan Scores Assigned by Hu-

mans to Plan Distances Between the Robot’s and the Human’s Ex-

pected Plans. This Gives a Heuristic for Computing Explicable Plans,

Which Is Used by the Reconciliation Search. 17

3.2 Schematic Diagram of the Second Setting. Here the Conditional Ran-

dom Field (CRFs) Are Used to Learn a Labeling Scheme over the Task

Labels Assigned by Humans to Robot Plans. This Model Gives the

Heuristic for Computing Explicable Plans. 18

xiii

Figure Page

3.3 Simulated Autonomous Car Domain. Here Only the Red Car Is Au-

tonomous. (a) the Autonomous Car Is Performing Lane Change Task

(b) the Autonomous Car Is Performing a Move-over Maneuver (c) the

Autonomous Car Is Trying to Merge to the Middle Lane and Is Con-

fusing the Human Driver with Its Signals. (d) the Autonomous Car Is

Waiting at a 4-way Stop Even Though It Is Its Turn to Cross. 30

3.4 For the Car Domain Test Problems, the Graph Shows How the Search

Process Finds Plans with Incrementally Better Explicable Scores. Each

Color Line Represents One of the 13 Different Test Problems. The

Markers on the Lines Represent a Plan Solution for That Problem.

The Y-axis and the X-axis Represents the Explicability Scores of the

Plans and the Solution Number Respectively. 33

3.5 For the Car Domain, the Optimal and Explicable Plans Were Com-

pared for Their Explicability Scores. 34

3.6 For the Car Domain, the Optimal and Explicable Plans Were Com-

pared for Their Explicability Scores. 34

3.7 The Goal of the Robot Is to Deliver the Device and Beverage Cup to

the Destination. In the Cost-optimal Plan, Robot Delivers Both the

Items Together, Whereas in the Explicable Plan the Robot Delivers the

Items Separately. A Video Demonstration Can Be Viewed at https:

//bit.ly/2JweeYk . 36

3.8 For Delivery Domain Test Problem Instances, the Optimal and Expli-

cable Plans Were Compared for (a) Plan Costs (B) Explicability Scores

Provided by Test Subjects. 37

xiv

https://bit.ly/2JweeYk
https://bit.ly/2JweeYk

Figure Page

3.9 Execution of Two Plans Generated by Opt(Left) and Algorithm 2

(Right) for One out of the 8 Testing Scenarios. The Top Figure Shows

the Setup Where the Goal Is to Build a Tower of Height 3. The Block

Initially on the Left Side of the Table Is a Heavy Block. The Op-

timal Plan Involves Manipulating the Light Blocks (i.e., Putting the

Two Light Blocks on Top of the Heavy One); The Explicable Plan Is

More Costly since It Requires Moving the Heavy One. A Video of the

Demonstration Can Be Viewed at https://youtu.be/uSunoM628lw. . 44

4.1 The Differences in Belief Sequences Induced by Different Plans for an

Observer with Noisy Sensors. 58

4.2 Illustration of the Impact of Plan Legibility on the Observer’s Plan

Inference Process. 61

4.3 Empirical Evaluation of ∆ in Algorithm 3 for Goal Legibility Vari-

ant. We Report the Number of Problem Instances Solved for Different

Values of ∆. 66

5.1 Use of Environment Design to Improve the Explicability of a Robot’s

Behavior in a Shared Environment. 71

5.2 Illustration of Longitudinal Impact on Explicability. Prob Determines

the Probability Associated with Executing Each Task in PExp. For

Each Task, the Reward Is Determined by the Inexplicability Score of

That Task. The Probability of Achieving This Reward Is Determined

by γ × Probability of Executing That Task. Additionally, with a Prob-

ability (1−γ) the Human Ignores the Inexplicability of a Task and the

Associated Reward Is given by an Inexplicability Score Of 0. 79

xv

https://youtu.be/uSunoM628lw

Figure Page

5.3 The Plot Shows the Impact of Inexplicability Score Coefficient (α)

on Design Size in the Solutions over Different Time Horizons for a

Driverlog Problem. 89

5.4 The Office Assistant Domain: (a) the Original Domain; (b) to Induce

Legible Behavior, We Can Add Dividing Walls to Constrain the Agent

and Help the Observer Reduce Uncertainty in Their Mental Model;

And (c) to Induce Predictable Behavior We Can Reduce Uncertainty

about the Item Being Picked up by Including a Tray That Allows the

Agent to Pick Up Both of the Objects. 92

6.1 Illustration of Impact of Goal Obfuscation and Secure Goal Obfusca-

tion on Human’s Mental Model. 102

6.2 Illustration of the Impact of Plan Obfuscation on Human’s Mental Model.106

6.3 Empirical Evaluation of ∆ in Algorithm 3 for Goal Obfuscation and

Goal Legibility Variants. We Report the Number of Problem Instances

Solved for Different Values of ∆. 111

6.4 A Gridworld Example Illustrating Our Definition of Privacy. With

an Observation Model That Distinguishes Diagonal and Orthogonal

Actions, the Observer Sees the Same Sequence of Observations for All

the Three Goals Regardless of the Agent’s True Goal. 113

7.1 The Differences in Belief Updates Induced by the Same Plan for Two

Observers with Noisy Sensors. Here Observer-X is Adversarial and

Observer-C is Cooperative. 131

xvi

Figure Page

7.2 Comparison of Average and Standard Deviation for Goal Difference

(GD), Plan Length and Run Time Using a Baseline Planner, IP Plan-

ner and Heuristic-guided Planner over Three Domains. 148

7.3 (a) Table Shows the Average and Standard Deviation GD for IPC

Domains. (b) Graph Shows Relative GD Between Our Algorithm and

Approaches That Achieve Obfuscation/Legibility in Isolation. 150

8.1 Illustration of an Assistive Joint Plan in Urban Search and Rescue

Domain. (a) the Robot Collects Items Required for a Side Goal (Fire

Extinguisher) and Human’s Goal (Medkit) in a Wagon, (b) Makes the

Human Aware of the Items It Is Carrying by Showing Them, (c) Leaves

the Wagon in Room E. (d) the Human Collects the Medkit from Room

E to Accomplish Her Goal. 155

8.2 Illustration of Assistive Plan Used in First User Study. The Goal of

the Human Commander Is to Find a Medkit. She Does Not Know

What Items Are Present in Each Room (Indicated by Blue Regions)

(a) the Robot Goes into Room B, (b) Comes out with a Wagon and

Shows Her the Items of the Wagon. It Then Proceeds to Room E, (c)

Comes out Without the Wagon and Exits the Floor. 168

8.3 Illustration of Assistive Plan Used in the Second User Study. Human’s

Goal Is to Find All the Medkits. She Does Not Know What Items Are

Present in Each Room (Indicated by Blue Regions) (a) the Robot Goes

into Room B, (b) Comes out with a Wagon and Declares All Rooms

a, B, C, D Are Empty. It Then Proceeds to Room E, (c) Comes out

and Exits the Floor with the Wagon. 169

xvii

Figure Page

8.4 Results for Hypothesis 1a. The Four Colors Stand for 4 Options in

Questions (3) and (4). Here PA Refers to Proactive Assistant, and 1

and 2 Denote the User Study Numbers. 171

xviii

Chapter 1

INTRODUCTION

The recent advances in the field of AI have made AI systems a part and parcel of

our day-to-day lives. So much so that, each and every routine activity in our daily

lives revolves around AI-backed platforms – from a smart speaker powered by an AI

assistant in your living room to a smart cooker in your kitchen to a smart toothbrush

in your bathroom to a smart car in your garage. The advances in AI have changed

the landscape of various industries like finance, healthcare, marketing, education, etc.

However most of these AI platforms are not human-aware. They are not human-aware

because they do not account for the human’s preconceived notions or intentions while

performing an activity. For example, a smart car that expects the human driver

to take control of the steering wheel during an event without accounting for the

human’s response time to that event is not human-aware. A future where humans

and AI systems cohabitate and collaborate with true synergy is yet to come!

For an AI system to be truly human-aware, there are quite a few considerations

that need to be taken into account. First of all, the AI system should have a sense

of the human’s understanding of the task. Further, it should use this information

to synthesize behavior that the human expects the system to generate. A human-

aware AI system may have to take the role of a teacher or of a teammate or of a

subordinate depending on the task at hand and depending on the human’s capabilities

and limitations. Some of the application domains that may directly benefit from a true

human-AI synergy involve commercial settings (like factory floors [18; 17], warehouses,

restaurants [58], etc.) where humans and robots are working alongside each other as

co-workers in shared workspaces (as against robots operating in a separate workspace

1

to avoid accidents), or in disaster response settings [4; 16] (like collapsed or unstable

structures) where it is physically unsafe for the humans to operate but the robot

can collaborate remotely with the humans to perform certain tasks, or in decision

support settings (like providing assistance/advise to pilots in the cockpit [5], providing

suggestions to doctors in a clinical setup [2; 3]) where the AI agent is helping the

human counterpart perform a computationally challenging task, etc. As it can be

seen, there are many industries that may benefit from true human-aware AI agents.

However, not all applications of human-aware AI fall under settings with coopera-

tive interactions. There are also some application domains that require the AI agent

to tackle adversarial entities. In such situations, it is equally important for the AI

agent to model the adversarial entity and to respond in a way that minimizes the

leakage of sensitive information. Therefore, the AI agent has to play the role of a pri-

vacy preserving agent. For instance, there are directly relevant scenarios like military

planning where the enemies may be interested in tracking say, the troop movements

to discover some sensitive information, or more commonly day-to-day scenarios, in-

volving the supermarket or department stores that use blue-tooth beacons placed in

aisles to gather information about the customer by pinging her mobile phone blue-

tooth without her knowledge. In such situations, the AI agent should have a sense

of the adversary’s objective of gleaning sensitive information and should ensure that

the user’s information leakage is at a minimum.

This thesis will establish a taxonomy of different types of human-aware AI behav-

iors (as shown in Figure 1.1) and will explore and discuss how these behaviors can be

synthesized and the challenges encountered in synthesizing them. In this thesis, I will

consider problem settings where an AI system is an autonomous embodied robotic

agent with the objective of solving a task in the presence of some human observers.

These human observers due to their vested interest in the robot’s objectives, may

2

Figure 1.1: An Overview of the Thesis.

be inclined to try and infer the behavior of the robot. The humans in the environ-

ment may have limited perception of the robot’s activities or may have incomplete

or inaccurate beliefs about the robot’s capabilities, beliefs or intentions. The robot

has to be capable of reasoning over these aspects and synthesize behaviors that are

interpretable to the humans as well as assistive despite their limited perception or

computational capabilities. On the flip side, if the observing entity has adversar-

ial intent towards the robot, the robot has to synthesize behaviors that restrict the

information inferred by the adversarial observer. In addition, if there are multiple

human observers in the environment with varying relationship (cooperative as well as

adversarial) with the robot, it has to synthesize behaviors that balance the amount

of information inferred by each of the observers. Furthermore, this thesis will also

explore the benefits of designing an environment in which the robot is operating in

order to engender desirable behavior from the robot.

1.1 Thesis Overview

With the above discussion in mind, the thesis (refer Figure 1.1) is organized as follows:

3

• Chapter 2 lays out a brief background on the type of problems that will be

discussed in this thesis. Specifically, this chapter will discuss the preliminary

notations that will be used to represent the robot’s model as well as the human’s

mental model and her perception limitations, which are crucial in the synthesis

of human-aware robot behaviors.

• Chapter 3 will discuss the synthesis of a type of interpretable robot behavior

namely explicable behavior. Through explicable behavior the robot can ensure

that its behavior aligns with the human’s expectations of it. Specifically, we will

see two different approaches (model-based and model-free) that can be used to

generate such explicable plans.

• Chapter 4 will focus on another type of interpretable robot behavior namely

legible behavior. Through legible behavior the robot can convey some infor-

mation about its goals or plans to the human observer. Here we will see the

controlled observability planning framework that allows the agent to exhibit

two types of legible behaviors.

• Chapter 5 will build on the discussion about explicable behavior. Specifically,

it will focus on leveraging environment design techniques to optimize the envi-

ronment in a way that boosts explicable robot behaviors. We will also see a way

to model explicability given a longitudinal interaction between the human and

the robot. Further, we will briefly discuss the notion of environment design for

legible and predictable behaviors and how it connects to the existing literature

on goal/plan recognition design.

• Chapter 6 will discuss the synthesis of obfuscatory behaviors which allow the

robot to hide information about its goals and plans. Here we will see how the

4

goal obfuscation approach can maintain obfuscation even when the algorithm

is queried with different inputs (i.e. how it can be secure to replay attacks).

We will also see how the robot can modulate the coverage of goal obfuscation

depending on its available resource budget.

• Chapter 7 will discuss a more general scenario where the environment can

consist of both adversarial as well as cooperative observers. Here we will see

how the robot can optimally balance the amount of goal obfuscation for an

adversarial observer with the amount of goal legibility for a cooperative observer.

• Chapter 8 will discuss the synthesis of proactively assistive behaviors. With

proactive assistance, it is important for the robot to ensure that the human

observer is aware of the potential cost reduction. Here we will see an extension of

the controlled observability planning framework which models a human observer

who not only can observe but also act in the environment.

Chapter 9 concludes the thesis with a summary of the various approaches used to

synthesize interpretable and obfuscatory behaviors. Here we will reflect on various

aspects of the presented work as well as avenues for future directions and highlight

the key takeaways of this thesis.

5

Chapter 2

BACKGROUND

Before we dive into each of the aforementioned robot behaviors, we will first take

a look at some of preliminary notations and concepts that will help us in setting the

stage for the main thesis contributions.

2.1 Preliminaries

We will be using the notation of planning problems [35] to define the frameworks

in this thesis.

2.1.1 Planning

A planning problem can be defined as a tuple M = 〈F ,A, I, G, c〉, where F , is

a set of fluents, A, is a set of actions, and c : A → R>0 is the cost for executing an

action. A state s of the world is an instantiation of all fluents in F . Let S be the

set of states. I ∈ S is the initial state, that is all the fluents are instantiated. G is a

goal condition where a subset of fluents in F are instantiated. Each action a ∈ A is a

tuple of the form 〈pre(a), add(a), del(a)〉 where pre(a) ⊆ F is a set of preconditions,

add(a) ⊆ F is a set of add effects and del(a) ⊆ F is a set of delete effects of action

a. The transition function ΓM(·) is given by ΓM(s, a) |= ⊥ if s 6|= pre(a); else

ΓM(s, a) |= s ∪ add(a) \ del(a). The solution toM is a plan or a sequence of actions

π = 〈a1, a2, . . . , an〉, such that, ΓM(I, π) |= G, i.e., starting from the initial state and

sequentially executing the actions results in the robot achieving the goal. The cost of

the plan, c(π), is a sum of the cost of all the actions in it, c(π) =
∑

ai∈π c(ai).

6

2.1.2 Human-aware Planning

An autonomous robot’s planning model MR = 〈F ,AR, IR, GR, cR〉, where F is

a set of fluents, AR is a set of its actions, IR is its initial state, GR is its goal and

cR is its cost function, can compute a sequence of actions from its initial state that

optimizes its cost (resource or time) towards its goal. But when the robot is operating

in the presence of a human observer who has vested interests in the robot’s goal, the

robot cannot simply reason with its own model or optimize its own cost to the goal.

In order to ensure it is being human-aware, the robot should model the human’s

beliefs and understanding of the robot model captured asMR
h = 〈F ,ARh , IRh , GR

h , c
R
h 〉,

representing the human’s mental model of the robot model. Note that this is different

from MH = 〈F ,AH , IH , GH , cH〉, which represents the human’s model of her own

task.

Further, the human observer who is observing the robot may sometimes have

imperfect observations of the robot’s activities. In this thesis, we will study some of

the complications resulting from human’s perception limitations captured using the

parameters of her sensor model. The human’s sensor model can be represented as,

ObsH = 〈ΩH ,OH〉, where ΩH is a set of observation tokens that are distinguishable

by the human. We will use ω ∈ ΩH to denote an observation token, and 〈ω1, . . . , ωn〉

to denote an observation sequence. OH is an observation function that maps an

action performed and next state achieved to an observation token in Ω. This function

captures any preception limitations present in the human’s sensor model. Given a

sequence of tokens, 〈ω1, . . . , ωn〉, a plan π is consistent with this sequence if and

only if 〈ω1, . . . , ωn〉 |= π. Whenever the human’s sensor model produces imperfect

observations, it can be taken into account as part of her mental model, written as,

MR
h = 〈F ,ARh , IRh , GR

h , c
R
h , Obs

H〉.

7

Figure 2.1: Illustration of Differences Between the Robot’s Model and the Human’s

Mental Model of the Robot in a Urban Search and Rescue Domain.

We will now see some reasons for a drift between the robot’s model and the

human’s understanding of it, and how different aspects regarding the human’s biases

and the human’s sensor model of the robot’s activities affect the human’s mental

model of the robot model.

2.1.3 Human’s Mental Model of the Robot Model

The human observer may have partial or inaccurate understanding of how the

robot operates in the environment and/or what goals/plans the robot is intending to

follow in the environment. The robot should be able to model the human’s miscon-

ceptions and beliefs about itself in the form of a mental model of the human. The

human’s mental model maybe different from the robot’s actual model in multiple

ways. It maybe different in terms of robot’s capabilities. The human might have an

incorrect understanding of the robot’s actions or may incorrectly attribute capabil-

ities to the robot that are not physically possible for the robot. Or she may have

incorrect understanding of the state of the environment. She may assume certain

8

Figure 2.2: Illustration of the Impact of Human’s Noisy Sensor Model on Human’s

Mental Model of the Robot in a Urban Search and Rescue Domain.

facts in the environment are true when they are not in actuality. She may also have

incorrect assumptions about the robot’s objectives or intentions. She may have par-

tial observability of robot’s actions or may have incorrect information about robot’s

sensor capabilities. She may also be reasoning in terms of a different or a simpler

representation than the one robot is using. Due one or many of these reasons the

robot cannot simply optimize its behavior with respect to its own model, and instead

may have to also account for the human’s mental model while synthesizing its behav-

ior. Figure 2.1 illustrates the differences between the robot’s model and the human’s

understanding of the robot model. This example shows a urban search and rescue

scenario where the internal agent i.e. the robot has a different map than the external

agent i.e. the human commander. Therefore, the robot’s optimal path to the medkit

is uninterpretable to the human.

9

Perception Limitations of the Human

Even when the human has complete and correct understanding of the robot’s capabil-

ities, she may suffer from partial observability of the robot’s activities. For instance,

the human may have access to a coarse-grained GPS sensor model that cannot dis-

tinguish between robot’s movement within a 10 ft radius. That is the human’s sensor

model, ObsH , may not be fine-grained (i.e. a noisy sensor model) such that a single

observation about the robot’s activity may map to multiple similar looking activities

plausibly performed by the robot. Or there maybe some activities that do not get

recognized by the human’s sensor model (i.e. some activities maybe non-observable).

Or there maybe certain time steps at which activities do not get recorded (i.e. some

time steps may have missing observations). These kinds of partial observations re-

quire the human to maintain a belief about the robot’s activities. That is the partial

observability results in divergence of human’s belief from the actual robot state. As a

result, the robot cannot simply optimize its behavior with respect to its own model,

and may instead have to also account for the human’s sensor model while synthe-

sizing its behavior. Figure 2.2 illustrates the uncertainty about robot’s motion in

human’s mental model due to human’s noisy sensor model. Here the robot and the

human have synced up on the current map of the environment, although due to noisy

observations, it is not clear to the human whether the robot has moved left or right.

2.2 Implicit Communication through Behavior

In the plan recognition literature, depending on the role played by the robot,

the process of inference of the robot’s activities has been classified into two major

categories, namely, keyhole recognition and intended recognition [23; 11]. In keyhole

recognition, the robot performs its activities without the intention of impacting the

10

inference process of the observers. In contrast, in intended recognition, the robot is

aware of the observer’s model and performs activities to either actively aid or hinder

the process of inference. In this thesis, we consider a robot of the latter type.

A robot that is aware of the human observer’s model can choose to communi-

cate the information it wants the humans to know. However, explicit communica-

tion comes with added communication cost and constraints. Explicit communication

requires multiple considerations: what information should be communicated, when

should it be communicated, how should it be communicated, etc. In particular, ex-

plicit communication may suffer from vocabulary mismatch between the robot and

the human. For instance, the robot may be operating at a more fine-grained level

of information, while the human may be operating at an abstract level. Explicit

communication may also suffer from inherent delays in communicating information.

For instance, consider a Mars rover, it takes about 22 minutes for the communication

signals to reach from Mars to Earth and back. Moreover, it might not be always

possible for the robot to communicate explicitly. For instance, in a disaster response

scenario, there might not be an explicit facility to enable communication, instead the

human observer may only be able to see the movement of the robot on a map. In such

cases, it becomes important for the robot to actively alter the inference process of the

human by synthesizing behavior that implicitly communicates necessary information

to the human.

In this thesis, we broadly explore two types of behaviors that achieve implicit

communication: interpretable behaviors that aid a cooperative observer’s inference

process while obfuscatory behaviors that hinder an adversarial observer’s inference

process. Figure 2.3 illustrates the difference between interpretable and obfuscatory

behaviors.

11

Figure 2.3: Illustration of Implicit Communication for Cooperative as Well as Adver-

sarial Observers. Through Behavior, the Robot Can Communicate Its Goal of Picking

up the Rightmost Medkit to the Cooperative Observer in the Leftmost Sub-figure,

While It Can Hide Its Intentions from the Adversarial Observer in the Rightmost

Sub-figure by Taking an Ambiguous Path.

2.2.1 Interpretable Behavior

When the robot is acting in the presence of a cooperative human observer, it has to

ensure that its decisions are interpretable to the human-in-the-loop. Uninterpretable

behavior can lead to increased cognitive load on the human – from reduced trust

and productivity to increased risk of danger around the robot [32]. The Roadmap

for U.S. Robotics [21] emphasizes – “humans must be able to read and recognize robot

activities in order to interpret the robot’s understanding”. The robot’s behavior may

be uninterpretable if the human: (1) has an incorrect notion of the robot’s beliefs

and capabilities [102; 19; 57] (2) is unaware of the robot’s goals and rewards [27; 59]

or (3) cannot predict the robot’s plan or policy [34; 59].

Thus, in order to be interpretable, the robot must take into account the human’s

expectations of its behavior – i.e. the human mental model. In this thesis, we will

12

Figure 2.4: Illustration to Demonstrate Improvement in Explicability of the Robot’s

Behavior after Environment Design.

discuss the synthesis of the three main types of interpretable behaviors: (1) explicable

behavior allows the robot to conform to human’s expectations, (2) legible behavior

allows the robot to communicate information about its goals and plans to the human

and (3) interpretable assistive behavior that allows the robot to communicate how

the assistance affects the human’s future decisions. These behaviors will be covered

in detail in Chapters 3, 4 and 8 respectively.

Further, we will also see how the interpretability associated with achieving certain

tasks can be improved by leveraging environment design. One advantage of redesign-

ing the environment is that the process of generation of interpretable behavior is

offloaded from the robot onto the design process. In other words, the computational

overhead of generating interpretable behavior – dealing with the human mental model

and reasoning over it – becomes a part of the design process, which can be done of-

fline. Figure 2.4 illustrates this concept. Consider a robot which cannot pass through

a passageway because of a reflective surface. This might not be evident to the human

teammates who find the roundabout route of the robot (in the leftmost subfigure)

13

inexplicable. After installing barricades (as shown in the rightmost subfigure), it be-

comes evident to the humans that the robot cannot pass through the passageway.

Thus alleviating their worries and increasing the explicability of the robot’s behavior.

This notion will be covered in detail in Chapter 5.

2.2.2 Obfuscatory Behavior

When the robot is acting in the presence of an adversarial observer, it has to

ensure that its decisions do not reveal sensitive information about its task. If the

robot’s activities are not secure, an adversarial observer can use diagnosis to in-

fer private information and interfere with the robot’s objectives. For instance, in

military planning, adversaries observe troop movements to infer possible targets; in

corporate strategy, competitors predict each others future directions by observing po-

tential partnerships; in product design, component specifications often portend new

product’s functionality.

Thus, in order to preserve the privacy of sensitive information, the robot has to

take into account the adversary’s mental model. In this thesis, we will discuss the

synthesis of three types of obfuscatory behaviors: (1) goal obfuscatory behavior that

allows the robot to hide sensitive information about its objectives, (2) plan obfus-

catory behavior that allows the robot to hide information about its activities from

the adversarial observer, and (3) secure goal obfuscatory behavior that allows the

robot to obfuscate information even when the adversary has access to the robot’s be-

havior generation algorithm. Further, we will also see behavior synthesis challenges

when both the adversarial as well as the cooperative observers exist in the environ-

ment. In such a setting, with multiple different observers, the objective of the robot

is to provide necessary information to the cooperative observers while hiding it from

adversarial observer. We will explore these behaviors in detail in Chapter 6 and 7.

14

Chapter 3

PLANNING FOR EXPLICABLE BEHAVIOR

In this chapter, we will focus the discussion on explicable behavior which is a

type of interpretable behavior. An important challenge in the human-in-the-loop

scenarios is to ensure that a robot’s behavior is comprehensible to the humans in the

loop. Without it, the robot runs the risk of increasing the cognitive load of humans

which can result in reduced productivity, safety, and trust [32]. The robot’s behavior

may seem inexplicable to a human when there is a mismatch between the robot’s

plans and the human’s expectations of the robot’s plans. This mismatch may arise

because of the difference in the actual robot model MR, and the human’s mental

model of it,MR
h . For example, consider a scenario with an autonomous car switching

lanes on a highway. The autonomous car, in order to switch the lane, may make

sharp and calculated moves, as opposed to gradually moving towards the other lane.

These moves may well be optimal for the car due to its superior sensing and steering

capabilities. Nevertheless, a passenger sitting inside may perceive this as dangerous

and reckless behavior.

In order to avoid being inexplicable, the robot has to reason with the human’s

mental model and compute the plans that align with this model. As long as the

robot’s behavior is aligned with the human mental model, the human can make sense

of it. Therefore, the objective of explicable planning is to generate robot plans that

not only minimize the cost of the plan, but also the distance between the robot

plan produced by MR and the plan expected by the human produced by MR
h . Of

course, an immediate question is, ifMR
h is available to the robot, why isMR required

in the plan generation process at all? We note that this is a necessary component

15

since the human mental model might entail plans that are not even feasible for the

robot or are prohibitively expensive, and can thus at best serve as a guide, and

not an oracle, to the explicable plan generation process. Therefore, instead of using

MR
h directly, the robot can use MR

h as a guide to compute plans that reduce the

distance with human’s expected plans. In settings where the objective is to minimize

the cognitive load on the human or minimize the cost of explicit communication

of explanations [19; 63], the computation of explicable plans can be crucial. Also,

settings where the observers are not necessarily experts in the domain and tend to

have noisy or incomplete understanding of robot behavior, explicable plans can be

useful for engendering trust.

An important consideration in the computation of explicable behavior is access to

the human mental model, MR
h . We present two settings in this chapter, one where

the robot has access toMR
h , i.e. model based explicable planning, and another where

the robot learns an approximation of it, M̂R
h , i.e., model-free explicable planning. In

many domains, such as in factory scenarios, mission planning or household, there is

generally a clear expectation of how a task should be performed. In such cases,MR
h

can be constructed following the norms or protocols that are relevant to that domain.

Most deployed products make use of inbuilt models of user expectations in some form

or the other. Building such models, of course, require interactions with users of that

domain.

In model-based explicable planning, we hypothesize that the plan distances [93; 74]

can quantify the distance between the robot plan πMR and the expected plans πMR
h

from MR
h . The domain modeler constructs MR

h , which is then used to generate

expected plans. Then we compute the distance between plans from MR and MR
h .

The test subjects provide explicability assessments (scores reflecting explicability)

for robot plans. Then the scores are mapped to the precomputed distances and a

16

Figure 3.1: Schematic Diagram of the Setting: Here a Regression Model Called Expli-

cability Distance Is Learned to Fit Plan Scores Assigned by Humans to Plan Distances

Between the Robot’s and the Human’s Expected Plans. This Gives a Heuristic for

Computing Explicable Plans, Which Is Used by the Reconciliation Search.

regression model of the explicability distance is learned. The plan generation process

uses this learned explicability distance as a heuristic to guide the search. This process

is illustrated in Figure 3.1.

In model-free explicable planning, we learn an approximation of the human mental

model represented as M̂R
h . This model is learned based on an underlying assumption

that humans tend to associate tasks/sub-goals with actions in a given plan [96; 25].

The labeling scheme used by test subjects, to associate domain-specific task labels to

17

Figure 3.2: Schematic Diagram of the Second Setting. Here the Conditional Random

Field (CRFs) Are Used to Learn a Labeling Scheme over the Task Labels Assigned by

Humans to Robot Plans. This Model Gives the Heuristic for Computing Explicable

Plans.

actions in the plan, is used to learn an approximation M̂R
h . This labeling scheme is

learned from training examples provided by test subjects using conditional random

fields (CRFs). This learned model is then used as a heuristic to generate explicable

18

plans. This approach is illustrated in Figure 3.2.

3.1 Related Work

An important requirement for a robot collaborating with a human is the ability

to infer human’s goals and intents and use that information to guide its planning

process. There have been various efforts in the direction of human aware planning

to account for human’s beliefs and goals [87; 22; 67; 12; 20] to encourage human

robot interactions. More recently, the efforts have been directed towards studying

and understanding various forms of interpretable robot behaviors, especially in the

task planning and motion planning communities. Specifically, a recent survey [14] on

various interpretable behaviors establishes a taxonomy over the different types of in-

terpretable behaviors namely: explicability, legibility and predictability and provides

coherent categorization of recent works in this direction. This chapter specifically fo-

cuses on the generation of explicable behavior, while Chapter 4 deals with the notion

of legibility. Legible behaviors emerged as a way to reduce ambiguity over the goals

of the robot [28; 54]. However, these earlier works on legibility did not explicitly

consider differences between the robot model and the human mental model of the

robot model. Our work on explicable planning explicitly models such differences that

can result from the human’s assumptions and preconceived notions about the task as

well as the robot’s capabilities. Further, explicable planning specifically focuses on

aligning the robot’s behavior with the human’s expectations of it, despite the model

differences.

The work on explicable planning is also closely connected to the work on gener-

ating explanations through “model reconciliation” [19; 89; 92; 91]. The generation of

explicable plans and explanations can be seen as complementary strategies to deal

with model differences. In the case of explanations, the robot executes its inexpli-

19

cable behaviors and then provides an explanation to make its behavior explicable

to the human. Here the aim is to explicitly update the human’s mental model to

align it with the robot’s model. However, such explicit communication comes with

additional considerations - like what to communicate, when to communicate and how

to communicate. As the act of incorporating explanations can increase the human’s

cognitive load especially when the human is operating in a mission critical scenario

or when the communicated explanation involves multiple updates. In such situations,

the explicable behaviors are more suitable since they do not lead to increase in the

cognitive load as long as the explicable plan is closer to the human’s expected plan.

Further, in certain domains, where communication constraints can prevent commu-

nication of explanations altogether, explicable behavior may be the only alternative

available to the robot to build trust and to improve the overall interaction efficacy

with the human.

In the following sections, we will formally define the explicability planning problem

and present solution methodologies to compute explicable plans in each of the settings.

We also present empirical analysis of each setting using physical robot-based domains.

3.2 Explicable Planning Problem

The problem of explicable planning arises when the robot plan, πMR , deviates

from the human’s expectation of that plan, πMR
h
. Here πMR is the robot’s plan

solution to the planning problem, MR = 〈F ,AR, IR, GR, cR〉; whereas, πMR
h
is the

plan solution considering the human mental model of the robot model, such that,

MR
h = 〈F ,ARh , IRh , GR

h , c
R
h 〉. The differences in the human mental model can lead to

different plan solutions.

Definition 1. The explicable planning problem is defined as a tuple PExp =

〈MR,MR
h , δMR

h
〉, where,

20

• MR is the robot’s planning problem

• MR
h is the human’s mental model of the robot’s planning problem

• δMR
h
is the distance function that the human uses to compute the distance be-

tween her expected plan and the robot’s plan

With respect to MR and MR
h , the action names, preconditions, effects, costs of

the actions can be different, along with the initial and goal conditions. The solution

to an explicable planning problem is an explicable plan that achieves the goal in

the robot’s model while minimizing the plan distance from an expected plan in the

human’s mental model.

Definition 2. A maximally explicable plan is a plan, π∗MR, starting at IR that

achieves the goal GR, such that, argmin
πMR

c(πMR) + δMR
h

(πMR , πMR
h

).

In the following sections, we will define two different settings one where the human

mental model is known and other where an approximation of it is learned. We will

also provide details of how the approach differs in these two settings, in terms of

generation of explicable plans.

3.3 Model-based Explicable Planning

In this setting, we quantify the explicability of the robot plans in terms of the plan

distance between the robot plan πMR and candidate expected plans πMR
h
fromMR

h .

Since the distance function is not directly available to us, we learn an approximation of

it using a combination of three plan distances measures. The outline of our approach

is illustrated in Figure 3.1. Once both the models MR and MR
h are obtained, our

approach takes the following steps:

21

1. Firstly, the plan distances between the robot plans and the expected plans are

computed using plan the three aforementioned plan distance measures.

2. The human subjects are asked to provide scores for each of the candidate robot

plans by labeling each action in the plan with an explicable or inexplicable label.

3. Then the human explicability assessments (scores reflecting explicability) of

candidate robot plans are mapped to the plan distance measures in form of

regression model called explicability distance.

4. The synthesis of explicable plans is achieved by modifying the Fast-Downward

[40] planner to incorporate an anytime search with explicability distance as the

heuristic. This process results in incrementally more explicable plans.

Background on Plan Distance Measures

We now briefly discuss the three plan distances – action, causal link and state sequence

distances – proposed in [93; 74], that we use in this work to capture the explicability

distance between plans.

Action distance We denote the set of unique actions in a plan π as A(π) = {a | a ∈

π}. Given the action sets A(πMR) and A(π∗MR
h

) of two plans πMR and π∗MR
h
respec-

tively, the action distance is,

δA(πMR , π∗MR
h

) = 1−
|A(πMR) ∩ A(π∗MR

h
)|

|A(πMR) ∪ A(π∗MR
h

)|
(3.1)

Here, two plans are similar (and hence their distance measure is smaller) if they

contain same actions. Note that it does not consider the ordering of actions.

Causal link distance A causal link represents a tuple of the form 〈ai, pi, ai+1〉,

where pi is a predicate variable that is produced as an effect of action ai and used as a

22

precondition for the next action ai+1. The causal link distance measure is represented

using the causal link sets Cl(πMR) and Cl(π∗MR
h

),

δC(πMR , π∗MR
h

) = 1−
|Cl(πMR) ∩ Cl(π∗MR

h
)|

|Cl(πMR) ∪ Cl(π∗MR
h

)|
(3.2)

State sequence distance This distance measure finds the difference between se-

quences of the states. Given two state sequences (sR0 , . . . , s
R
n) and (sH0 , . . . , s

H
n′) for

πMR and π∗MR
h

respectively, where n ≥ n′ are the lengths of the plans, the state

sequence distance is,

δS(πMR , π∗MR
h

) =
1

n

[n′∑
k=1

d(sRk , s
H
k) + n− n′

]
(3.3)

where,

d(sRk , s
H
k) = 1− |s

R
k ∩ sHk |
|sRk ∪ sHk |

(3.4)

represents the distance between two states (where sRk is overloaded to denote the set

of predicate variables in state sRk). The first term measures the normalized difference

between states up to the end of the shortest plan, while the second term, in the

absence of a state to compare to, assigns maximum difference possible.

3.3.1 Explicability Distance

We start with a general formulation for capturing a measure of explicability of the

robot’s plans using plan distances. A set of robot plans are scored by humans such

that each action that follows the human’s expectation in the context of the plan is

scored 1 if explicable, and 0 otherwise. The plan score is then computed as the ratio

of the number of explicable actions to the total plan length. A set of expected plans,

Π∗MR
h
, for the planning problem MR

h , is a set of optimal cost plans that solve MR
h ,

Π∗MR
h

= {π(i)

MR
h
|i = 1, . . . , n}.

23

This set of expected plans consists of the plan solutions that the human expects

the robot to compute. But these plans are not necessarily feasible in the robot

model,MR. In order to compute the minimum distance between a robot plan and a

human’s expected plan, we use a following composite distance, which uses all three

plan distance measures. It is defined as follows:

Definition 3. A composite distance, δExp is a distance between pair of two plans

〈πMR , πMR
h
〉, such that,

δExp(πMR , πMR
h

) = ||δA(πMR , πMR
h

) + δC(πMR , πMR
h

) + δS(πMR , πMR
h

)||2.

But for each robot plan we want to find the minimum distance with respect to

the set of human’s expected plans. We say a distance minimizing plan in the set of

the expected plans is defined as follows:

Definition 4. A distance minimizing plan, π∗MR
h
, is a plan in Π∗MR

h
, such that for

a robot plan, πMR, the composite distance is minimized,

π∗MR
h

= {πMR
h
| argmin

πMR
h

δExp(πMR , πMR
h

)}.

Our overall objective is to learn a explicability distance function, i.e. learn a

mapping of explicability scores (scoring scheme used by the humans in the loop) to

the plan distances between a robot plan and corresponding distance minimizing plan

in the set of expected plans. To that end, we define a explicability feature vector as

follows:

Definition 5. An explicability feature vector, ∆, is a three-dimensional vector,

which is given with respect to a distance minimizing plan pair, 〈πMR , π∗MR
h
〉, such that,

∆ = 〈δA(πMR , π∗MR
h

), δC(πMR , π∗MR
h

), δS(πMR , π∗MR
h

)〉T .

This allows us to learn an explicability distance function, Exp(πMR / π∗MR
h

), which

is essentially a regression function, f, that fits the three plan distances to the total

24

plan scores, with b as the parameter vector, and ∆ as the explicability feature vector,

such that,

Exp(πMR / π∗MR
h

) ≈ f(∆, b) (3.5)

Therefore, a regression model is trained to learn the explicability assessment (total

plan scores) of the users by mapping this assessment to the explicability feature vector

which consists of plan distances for corresponding plans.

3.3.2 Plan Generation

In this section, we present the details of our plan generation phase. We use the

learned explicability distance function as a heuristic to guide our search towards

explicable plans.

Reconciliation Search

The solution to an explicable planning problem PExp is the set EExp of explicable

plans (with varying degrees of explicability) in MR. This is found by performing

“reconciliation search” (as detailed in Algorithm 1).

Non-Monotonicity

Since plan score is the fraction of explicable actions in a plan, it exhibits non-

monotonicity. As a partial plan grows, a new action may contribute either positively

or negatively to the plan score, thus making the explicability distance function non-

monotonic. Consider that the goal of an autonomous car is to park itself in a parking

spot on its left side. The car takes the left turn, parks and turns on its left indicator.

Here the turning on of the left tail light after having parked is an inexplicable action.

The first two actions are explicable to the human drivers and contribute positively

25

Algorithm 1 Reconciliation Search
Input: MR,MR

h , max_cost, and explicability distance Exp(. , .)

Output: EExp

1: EExp ← ∅ . Explicable plan set

2: open← ∅; closed← ∅ . Initialize open and closed lists

3: open.insert(I, 0, inf)

4: while open 6= ∅ do

5: n← open.remove() . Node with highest h(·)

6: if n |= G then

7: EExp.insert(π s.t. ΓMR(I, π) |= n)

8: end if

9: closed.insert(n)

10: for each v ∈ successors(n) do

11: if v /∈ closed then

12: if g(n) + cost(n, v) ≤ max_cost then

13: open.insert(v, g(n) + cost(n, v), h(v))

14: end if

15: else

16: if h(n) < h(v) then

17: closed.remove(v)

18: open.insert(v, g(n) + cost(n, v), h(v))

19: end if

20: end if

21: end for

22: end while

23: return EExp

26

to the explicability score of the plan but the last action has a negative impact and

decreases the score.

Due to non-monotonic nature of explicability distance, we cannot stop the search

process after finding the first solution. Consider the following: if e1 is explicability

distance of the first plan, then a node may exist in the open list (set of unexpanded

nodes) whose explicability distance is less than e1, which when expanded may result

in a solution plan with explicability distance higher than e1. A greedy method that

expands a node with the highest explicability score of the corresponding partial plan

at each step is not guaranteed to find an optimal explicable plan (one of the plans

with the highest explicability score) as its first solution. Therefore, to handle the non-

monotonic nature, we present a cost-bounded anytime greedy search algorithm called

reconciliation search that generates all the valid loopless candidate plans up to a given

cost bound, and then progressively searches for plans with better explicability scores.

The value of the heuristic h(v) in a particular state v encountered during search is

based entirely on the explicability distance of the robot plan prefix πMR up to that

state,

h(v) = Exp(πMR/π′MR
h

)

s.t. ΓMR(I, πMR) |= v and

ΓMR
h

(I, π′MR
h

) |= v (3.6)

We assume that the same state space is reachable for computation of the plan

prefix π′ from I to v in MR
h (as per Equation 3.6). We implement this search in

the Fast-Downward planner. The approach is described in detail in Algorithm 1. At

each iteration of the algorithm, the plan prefix of the robot model is compared with

the explicable trace π′MR
h
(these are the plans generated usingMR

h up to the current

state in the search process) for the given problem. There are few choices we could

27

consider in creating such prefixes, such as using optimal or simply valid plans to the

state inMR
h . Using the computed distances, the explicability score for the candidate

robot plans is predicted. The search algorithm then makes a locally optimal choice

of states. We do not stop the search after generating the first solution, but instead,

continue to find all the valid loopless candidate solutions within the given cost bound

or until the state space is completely explored.

3.3.3 Evaluation using Simulated Autonomous Car Domain

We evaluated our system using a simulated autonomous car domain. We con-

structed a human mental model by interviewing the test subjects. We also queried

the test subjects to validate the explicability scores of the explicable plans generated

using our solution approach.

Domain model

There are a lot of social norms followed by human drivers which are usually above

explicit laws. This can include normative behavior while changing lanes or during

turn-taking at intersections. As such this car domain has emerged as a vibrant testbed

for research [82; 61] in the HRI/AI community in recent times. In this work, we ex-

plore the topic of explicable behavior of an autonomous car in this domain, especially

as it related to mental modeling of the humans in the loop. In our autonomous car

domain (modeled in PDDL), the autonomous car modelMR consists of lane and car

objects as shown in Figure 3.3. The red car is the autonomous car in the experi-

ments and all other cars are assumed to have human drivers. The car objects are

associated with predicates defining the location of the car on a lane segment, status

of left and right turn lights, whether the car is within the speed limit, the presence of

a parked police car, and so on. The actions possible in the domain are with respect

28

to the autonomous car. These actions are Accelerate, Decelerate, LeftSqueeze, Right-

Squeeze, LeftLight {On, Off}, RightLight {On, Off}, SlowDown and WaitAtStopSign.

To change a lane, three consecutive actions of {Left, Right} Squeeze are required.

From MR we generated a total of 40 plans (consisting of both explicable and

inexplicable behaviors) for 16 different planning problems. These plans were assessed

by 20 human subjects, with each subject evaluating 8 plans (apart from 1 subject

who evaluated 7 plans). Also, each plan was evaluated by 4 different subjects. The

overall number of training samples was 159. The test subjects were required to have

a state driving license. The subjects were provided with the initial state and goal

of the car. After seeing the simulation the plan, they had to record whether they

found each action explicable or not. The assessment had two parts: one part involved

scoring each autonomous car action with 1, if explicable, and 0 otherwise (plan score

was calculated as the fraction of actions in the plan that were labeled as explicable);

the other part involved answering a questionnaire on the preconditions, effects of the

robot actions. It consisted of 8 questions with yes/no answers. The questions used

for constructing the domain and the corresponding answers are provided in Table

3.1. For each question, the answers with majority of votes were used by the domain

modeler to construct MR
h . The questions with divided opinions (3 and 7) were not

included in the models as some found that behavior explicable while some others

did not. The MR
h domain consists of the same state predicates but ended up with

different action definitions with respect to preconditions, effects, and action-costs.

Following are two examples of how the feedback was interpreted by the domain

modeler. For question 1, the majority of answers agreed with the statement. There-

fore for actions Accelerate and SlowDown, additional preconditions like (not (squeez-

ingLeft ?x)), (not (squeezingLeft2 ?x)), (not (squeezingRight ?x)), (not (squeezin-

gRight2 ?x)) were added, where x stands for car. For question 8, since the answers

29

(a) (b)

(c) (d)

Figure 3.3: Simulated Autonomous Car Domain. Here Only the Red Car Is Au-

tonomous. (a) the Autonomous Car Is Performing Lane Change Task (b) the Au-

tonomous Car Is Performing a Move-over Maneuver (c) the Autonomous Car Is Trying

to Merge to the Middle Lane and Is Confusing the Human Driver with Its Signals.

(d) the Autonomous Car Is Waiting at a 4-way Stop Even Though It Is Its Turn to

Cross.

30

No. Questions Yes No

1
Autonomous car should always maintain itself in the center of the lane

16 4
unless it is changing lanes

2 The car should automatically turn signal lights on before lane change. 20 0

3
The car should automatically turn signal lights on when the car starts

9 11
swerving away from the center of the lane.

4
At a four-way stop, it should automatically provide turn signal lights

18 2
when it is taking left or right turns.

5
It should slow down automatically when it is swerving off the center

15 5
of the lane.

6
It should slow down automatically when there is an obstacle

17 3
(pedestrian or parked vehicle) ahead in the lane.

7

Check one: When an emergency vehicle is parked on the rightmost

9 11lane, it should (1) automatically follow the move over maneuver,

(2) whenever possible follow the move over maneuver.

8

Check one: At a four-way stop, it should (1) wait for the intersection

15 5to be clear and to be extra safe. (2) wait for the other cars unless it is

its turn to cross over.

Table 3.1: The Questionnaire Used in the Human Study for Car Domain, and the

Tally of Answers given by Participants. For the Last Two Questions, the Participants

Were Asked to Choose One of the Two Options, and the “yes" Tally Corresponds to

the First Answer, “no" To the Second.

agreed with choice 2, actions waitAtStopSign1, waitAtStopSign2, waitAtStopSign3

were replaced by a new general action waitAtStopSign. This action removed predi-

31

Algorithm Autonomous Car R2 % Delivery Robot R2 %

Ridge Regression 53.66 31.42

AdaBoost Regression 61.31 51.27

Decision Tree Regression 74.79 39.61

Random Forest Regression 90.45 75.29

Table 3.2: Accuracy for Car and Delivery Domain.

cates waiting1, waiting2, waiting3 from the action definition. Also, actions atStopSig-

nAccelerate, atStopSignLeft, atStopSignRight were changed to remove the precondi-

tion waiting3 (these actions thus had two definitions inMR to allow for explicable

behavior, one with higher cost).

Explicability Distance

For the training problems, explicable plans were generated using the modelMR
h . Since

some actions names were not common to both the domains, an explicit mapping was

defined between the actions over the two domains. This mapping was done in order

to support plan distance operations performed between plans in the two domains (for

the plan distances to be used effectively common action names are required).

As noted in Definition 5, features of the regression model are the three plan

distances and the target is the score associated with the plans. We tune the hy-

perparameters by performing grid search over parameters like the number of trees,

depth of tree and the minimum number of nodes to perform sample split. The results

for different learning models are as shown in Table 3.2. We tried several ensemble

learning algorithms to improve the accuracy of our model, out of which random forest

regression gave the best performance. Random forests allow selection of a random

subset of features while splitting the decision node. We evaluate the goodness of fit

32

of the model, using the coefficient of determination or R2. This value determines the

measure by which the fitted model can explain the variations in the target values.

This value lies between 0 to 1. Higher the R2 value, better is the model fitted to the

data. After training process, the new regression model was found to have 0.9045 R2

value. That is to say, 90% of the variations in the features can be explained by our

model. Our model predicts the explicability distance between the robot plans and

human mental model plans, with a high accuracy.

Results

Figure 3.4: For the Car Domain Test Problems, the Graph Shows How the Search

Process Finds Plans with Incrementally Better Explicable Scores. Each Color Line

Represents One of the 13 Different Test Problems. The Markers on the Lines Rep-

resent a Plan Solution for That Problem. The Y-axis and the X-axis Represents the

Explicability Scores of the Plans and the Solution Number Respectively.

We evaluated our approach on 13 different planning problems. We ran the algo-

rithm with a high cost bound, in order to cover the most explicable candidate plans

for all the problems. The Figure 3.4 reports the explicability scores of the first 8 solu-

33

Figure 3.5: For the Car Domain, the Optimal and Explicable Plans Were Compared

for Their Explicability Scores.

Figure 3.6: For the Car Domain, the Optimal and Explicable Plans Were Compared

for Their Explicability Scores.

tions generated by our algorithm for 13 test problems. From this graph, we note that

the reconciliation search is able to develop plans with incrementally better explicabil-

ity scores. These are the internal explicability scores (produced by the explicability

distance function).

The plan scores given by 10 test subjects were computed as the ratio of explica-

ble actions in the plans to the total plan length. Testing phase protocol was same

as that of the training phase, except for the questionnaire. The plan scores were

averaged over the number of test subjects. In this domain, an example inexplicable

plan for changing lanes from l2 to l1 would be LeftSqueeze-l2-l1, LeftSqueeze-l2-l1,

34

LeftSqueeze-l2-l1, LeftLightOn whereas the corresponding explicable plan would be

LeftLightOn, LeftSqueeze-l2-l1, LeftSqueeze-l2-l1, LeftSqueeze-l2-l1. The ordering of

LeftLightOn action decides whether the plan is explicable. From Figure 3.5, the test

subjects provided higher explicability scores for the explicable plans than the opti-

mal plans for all 13 problems. From Figure 3.6, we see for the last 7 problems, our

planner generated explicable plans with a cost higher than that of optimal plans; a

planner insensitive to explicability would not have been able to find these expensive

but explicable plans. This additional cost can be seen as the price the robot pays to

make its behavior explicable to the human. For the first 6 problems, even though the

cost is same as that of the optimal plans, a planner insensitive to explicability cannot

guarantee the generation of explicable plans.

3.3.4 Evaluation using Robot based Delivery Domain

This domain is designed to demonstrate inexplicable behaviors of a delivery robot.

The robot can deliver parcels/electronic devices and serve beverages to the humans.

It has access to three regions namely kitchen, reception and employee desk. For the

evaluation, we used a Fetch robot, which has a single arm with parallel grippers for

grasping objects. It delivers beverages, parcels, and devices using a tray. Whenever

the robot carries the beverage cup there is some risk that the cup may tip over and

spill the contents all over the electronic items on the tray. Here the robot has to

learn the context of carrying devices and beverages separately even if it results in an

expensive plan (in terms of cost or time) for it. A sample plan in this domain with

explicable and inexplicable plans is illustrated in Figure 3.7. Here, in the inexplicable

version, the robot delivers device and beverage together. Although it optimizes the

plan cost, the robot may tip the beverage over the device. Whereas, in the explicable

version robot delivers the device and beverage cup separately, resulting in an expensive

35

Figure 3.7: The Goal of the Robot Is to Deliver the Device and Beverage Cup to

the Destination. In the Cost-optimal Plan, Robot Delivers Both the Items Together,

Whereas in the Explicable Plan the Robot Delivers the Items Separately. A Video

Demonstration Can Be Viewed at https://bit.ly/2JweeYk

plan due to multiple trips back and forth. A video demonstration can be viewed at

https://bit.ly/2JweeYk.

Domain and explicability distance

This domain is also represented in PDDL. The robot model has the following actions

available: pickup, putdown, stack, unstack and move. The domain modeler provided

MR
h based on usual expectations of robots with a similar form factor. For example,

in MR
h , certain actions which could be perceived riskier (like, carrying the device

and cup in the same tray) had a higher cost due to the possibility of damaging the

items. ThusMR
h incentivizes the planner to choose safer actions. Both models have

same state space and action representation. The model differences lie in the action-

costs as well as preconditions and effects of actions. There were 20 plan instances

created for each of the 13 planning problems. Each of the plans was labeled by 2

36

https://bit.ly/2JweeYk
https://bit.ly/2JweeYk

(a) (b)

Figure 3.8: For Delivery Domain Test Problem Instances, the Optimal and Explicable

Plans Were Compared for (a) Plan Costs (B) Explicability Scores Provided by Test

Subjects.

human subjects, which resulted in 40 different training samples (some problems have

multiple solution plans). The performance of different ensemble learning techniques

is as shown in Table 3.2. We again use the random forest regression model with an

accuracy of 75%.

Results

For evaluation of this domain, 8 new planning problems (similar to the one shown

in Figure 3.7) were used. These plan instances with a pictorial representation of

intermediate behavioral states were labeled by 9 test subjects. For testing phase, the

same protocol was followed as that in training phase. In Figure 3.8a, we compare the

explicability scores provided by test subjects. The explicability scores provided by

the subjects are higher for explicable plans. Some plans involved the robot stacking

cups over devices to generate cost-optimal plans. These plans ended up receiving

least scores. Figure 3.8b shows the comparison between the plan costs. Whenever

the items consist of beverage cups, the robot has to do multiple trips, therefore all

37

the explicable plans are more expensive than the optimal plans. For such scenarios,

if a robot uses a cost-optimal planner, the plans chosen will always be inexplicable

with respect to the plan context.

3.4 Model-Free Explicable Planning

If the robot does not have access to the human’s mental model, then an approx-

imation of it can be learned. This approach shows that it is not necessary to build

a full-fledged planning model of the human’s mental model, rather it is enough to

predict the next explicable action given a plan prefix. In this setting, the human

mental model is learned in the form of a labeling scheme used by the humans-in-the-

loop. Here the underlying hypothesis is that the humans tend to associate abstract

tasks or sub-goals to actions in a plan. If the human-in-the-loop is able to associate

any domain-specific label to an action in a plan then that action is assumed to be

explicable, otherwise, the action is considered inexplicable. Such a labeling scheme

is learned using conditional random fields from training examples annotated by the

humans. The learned model is used as a heuristic function in the planning process.

3.4.1 Problem Formulation

In this case, since theMR
h is not known beforehand, the distance function δMR

h
(·, ·)

in Definition 2 is approximated using a learning method. We postulate that the

humans understand robot plans by associating abstract tasks with actions, which can

be considered as a labeling process. Based on this, we assume that δMR
h

(πMR , πMR
h

)

can be functionally decomposed as: δMR
h

(πMR , πMR
h

) = F ◦ L∗(πMR), where F is a

domain-independent function that takes plan labels as input, and L∗ is the labeling

scheme of the human for robot plans based onMR
h .

38

3.4.2 Labeling

Given the domain, we assume that a set of task labels T is provided to label robot

actions: T = {T1, T2, . . . , TM}. In this formulation, we assume that explicability

represents the association between abstract tasks and robot actions; each action in a

plan is associated with an action label. The set of action labels for explicability is the

power set of task labels: L = 2T . When an action label includes multiple task labels,

the action is interpreted as contributing to multiple tasks; when an action label is an

empty set, the action is interpreted as inexplicable. When a plan is labeled, we can

compute its explicability measure based on its action labels in a domain-independent

way.

More specifically, given a domain, the explicability θπMR
of a robot plan πMR is

computed by a mapping, Fθ : LπMR
→ [0, 1] (with 1 being the most explicable). LπMR

denotes the sequence of action labels for πMR , and Fθ computes the ratio between

the number of actions with non-empty action labels and the number of all actions.

3.4.3 Learning Approach

To formulate a learning method, we consider the sequence of labels as hidden

variables. The plan that is executed by the robot (which also captures the state

trajectory), as well as any cognitive cues that may be obtained (e.g., from sensing)

during the plan execution, constitute the observations. The graphical model that we

choose for our learning approach is conditional random field (CRF) [62] due to its

ability to model sequential data. An alternative would be HMMs; however, CRFs have

been shown to relax assumptions about the input and output sequence distributions

and hence are more flexible. The distributions that are captured by CRFs have the

following form where Z is a normalization factor: p(x, y) = 1
Z

∏
A(φ(xA, yA)).

39

In the equation above, x represents the sequence of observations, y represents the

sequence of hidden variables, and φ(xA, yA) represents a factor that is related to a

subgraph in the CRF model associated with variables xA and yA. In our context,

x are the observations made during the execution of a plan; y are the action labels.

Each factor is associated with a set of features that can be extracted during the plan

execution.

Features for Learning

Given a robot plan, the set of features that we have access to is the plan and its

associated state trajectory:

Plan Features Given the robot model (specified in PDDL), the set of plan fea-

tures for ai includes the action description and the state variables after executing the

sequence of actions 〈a0, ..., ai〉 from the initial state. This information can be easily

extracted given the model. We use a linear-chain CRF. Although linear-chain CRF

is very limited in capturing history information, we show that it is sufficient to dis-

tinguish between behavioral patterns in our evaluation domains via a combination of

the state and action information (i.e., plan features described above). Moreover, our

formulation is easily extensible to more general classes of CRFs. Given a robot plan

πMR
h

= 〈a0, a1, a2, . . .〉, each action is associated with a set of features. Hence, each

training example is of the following form: 〈(F0,L0), (F1,L1), (F2,L2), . . . , 〉, where Li

is the action label for explicability of ai. Fi is the set of features for ai.

3.4.4 Plan Generation

Given a set of training examples in the form of annotated plans, we can train the

CRF model to learn the labeling scheme. We discuss two ways to use the learned

40

CRF model.

Plan Selection

The most straightforward method is to perform plan selection on a set of candidate

plans which can simply be a set of plans that are within a certain cost bound of the

optimal plan. Candidate plans can also be generated to be diverse with respect to

various plan distances. For each plan, the robot must first extract the features of the

actions as we discussed earlier. It then uses the trained model (denoted by LCRF)

to produce the labels for the actions in the plan. The explicability score of the plan

can then be computed as discussed before. These scores can then be used to choose

a plan that is more explicable.

Plan Synthesis

A more efficient way is to incorporate these measures as heuristics into the planning

process. Here, we consider the FastForward (FF) planner with enforced hill-climbing

[44]. To compute the heuristic value given a planning state, we use the relaxed

planning graph to construct the remaining planning steps. However, since relaxed

planning does not ensure a valid plan, we can only use action descriptions as plan

features for actions that are beyond the current planning state when estimating the

explicability scores. These estimates are then combined with the relaxed planning

heuristic (which only considers plan cost) to guide the search.

3.5 Evaluation using Block Stacking Robot Domain

We evaluate our approach in a modified blocksworld domain with a physical robot

Fetch. It simulates a smart manufacturing environment where robots are working

alongside human coworkers. Although the human coworker and robot do not have

41

Algorithm 2 Model-Free Explicable Plan Synthesis
Input: MR,LCRF

Output: π∗PExp

1: Push IR into the open set O

2: while open set is not empty do

3: s = GetNext(O)

4: if G is reached then

5: return s.plan (the plan that leads to s from IR)

6: end if

7: Compute all possible next states N from s

8: for n ∈ N do

9: Compute the relaxed plan πRELAX for n

10: Concatenate s.plan (with plan features) with πRELAX (with only action descrip-

tions) as πprime

11: Compute and add other relevant features

12: Compute LπR = LCRF (πprime)

13: Compute h = f(θ, hcost) (f is a combination function; hcost is the relaxed planning

heuristic)

14: end for

15: if h(n∗) < h∗ (n∗ ∈ N with minimum h) then

16: Clear O

17: Push n∗ into O; h∗ = h(n∗) (h∗ is initially MAX)

18: else

19: Push all n ∈ N into O

20: end if

21: end while

42

common goals, synthesizing an explicable robot plan is quite crucial in this setting.

As in a shared workspace, unexpected robot behaviors can lead to loss of trust or

in worst case cause accidents. Therefore, to avoid such outcomes, the robot has to

generate explicable plans. Here, we compare the plans generated by our approach

against those by a cost-optimal planner (OPT) in terms of their explicability scores

by performing user studies.

3.5.1 Domain Description

In this domain, the robot’s goal (which is known to the human) is to build a tower

of a certain height using blocks on the table. The towers to be built have different

heights in different problems. There are two types of blocks, light ones, and heavy

ones, which are indistinguishable externally but the robot can identify them based

on the markers. Picking up the heavy blocks are more costly than the light blocks

for the robot. Hence, the robot may sometimes choose seemingly more costly (i.e.,

longer) plans to build a tower from the human’s perspective.

3.5.2 Experimental Setup

We generated a set of 23 problems in this domain in which towers of height 3 are

to be built. The plans for these problems were manually generated and labeled as

the training set. For 4 out of these 23 problems, the optimal plan is not the most

explicable plan. To remove the influence of grounding, we also generated permutations

of each plan using different object names for these 23 problems, which resulted in a

total of about 15000 training samples. We then generated a set of 8 testing problems

for building towers of various heights (from 3-5) to verify that our approach can

generalize. Testing problems were generated only for cases where plans are more

likely to be inexplicable. For each problem, we generated two plans, one using OPT

43

Figure 3.9: Execution of Two Plans Generated by Opt(Left) and Algorithm 2 (Right)

for One out of the 8 Testing Scenarios. The Top Figure Shows the Setup Where the

Goal Is to Build a Tower of Height 3. The Block Initially on the Left Side of the

Table Is a Heavy Block. The Optimal Plan Involves Manipulating the Light Blocks

(i.e., Putting the Two Light Blocks on Top of the Heavy One); The Explicable Plan Is

More Costly since It Requires Moving the Heavy One. A Video of the Demonstration

Can Be Viewed at https://youtu.be/uSunoM628lw.

and the other using Algorithm 2, and recorded the execution of these plans on the

robot. We recruited 13 test subjects and each subject was tasked with labeling two

plans (generated by OPT and our search algorithm respectively) for each of the 8

44

https://youtu.be/uSunoM628lw

testing problems, using the recorded videos and following a process similar to that

in the training phase. After labeling each plan, we also asked the subject to provide

a score (1-10 with 10 being the most explicable) to describe how comprehensible the

plan was overall.

3.5.3 Results

In this evaluation, we only use one task label “building tower”. For all testing

problems, the labeling process results in 77.8% explicable actions (i.e., actions with

a task label) for OPT and 97.3% explicable actions for our search algorithm. The

average explicability measures for our search algorithm and OPT are 0.98 and 0.78,

and the average scores (out of 10) are 9.65 and 6.92, respectively. We analyze the

results using a paired T-test which shows a significant difference between our search

algorithm and OPT in terms of the explicability measures computed from the human

labels and the overall scores (p < 0.001 for both). Furthermore, after normalizing the

scores from the human subjects, the Cronbach’s α value shows that the explicability

measures and the scores are consistent for both our search algorithm and OPT (α

= 0.78,0.67, respectively). These results verify that: 1) our explicability measure

does capture the human’s interpretation of the robot plans and 2) our approach

can generate plans that are more explicable to humans. In Fig. 7, we present the

plans for a testing scenario. The left part of the figure shows the plan generated by

OPT and the right part shows the plan generated by our search algorithm. A video

demonstration of the scenario can be viewed at https://youtu.be/uSunoM628lw

3.6 Concluding Remarks

In summary, we provided a solution to the problem of explicable planning in two

different settings. In the first setting, we presented the problem of explicable plan

45

https://youtu.be/uSunoM628lw

generation by modeling it in terms of plan distance measures studied in existing

literature. We also demonstrated how a regression model on these distance measures

can be learned from human feedback and used it to guide the robot’s plan generation

process to produce explicable plans. In the second setting, we showed how a labeling

scheme can be learned to approximate the human mental model. We generated this

labeling scheme by training a conditional random field model. We demonstrated the

effectiveness of these approaches in simulated as well as physical robot domains.

46

Chapter 4

PLANNING FOR LEGIBLE BEHAVIOR

In this chapter, the discussion will focus on another type of an interpretable

behavior, namely legibility. The notion of legibility allows the robot to implicitly

communicate information about its goals, plans (or model, in general) to a human

observer. For instance, consider a human robot cohabitation scenario consisting of a

multi-tasking robot with varied capabilities that is capable of performing multitude

of tasks in an environment. In such a scenario, it is crucial for the robot to aid the

human’s goal or plan recognition process, as the human observer may not always

know the robot’s intentions or objectives beforehand. Hence, in such cases, it may

be useful for the robot to communicate (either explicitly or implicitly) information

that the human is unaware of. Since, the better the human is at identifying the

robot’s goals or plans accurately, the better is the overall team performance. How-

ever, explicit communication of objectives might not always be suitable. For instance,

the what, when and how of explicit communication may require additional thought.

Further, several other aspects like cost of communication (in terms of resources or

time), delay in communication (communications signals may take time to reach the

human), feasibility of communication (broken or unavailable sensors), etc., may also

need to be considered. In such cases, the robot can simply synthesize a behavior that

implicitly communicates the necessary information to the human observer.

We will discuss the notion of legibility from the perspective of an offline setting

where the observer has partial observability of the robot’s actions. That is, the robot

has to synthesize legible behavior in a setting where the human observer has access

to the observations emitted from the entire execution trace of the robot but these

47

observations do not always reveal the robot’s exact action or state to the human. As

the human is trying to infer the robot’s goals or plans, she operates in a belief space

due to the partial observability of the robot’s activities. The robot has to modulate

the human’s observability and choose actions such that the ambiguity over specific

goals or plans is reduced. We refer to this as the controlled observability planning

problem (COPP). In the upcoming sections, we will see how the COPP formulation

can be used to synthesize goal legible behavior as well as plan legible behavior given

an offline setting where the observer has partial observability of the robot’s activities.

4.1 Related Work

In the motion planning and robotics community, legibility [28; 26; 29; 54] has

been a well-studied topic. However, this has been mostly looked at from the motion

planning perspective, and the focus has been on optimizing the motion trajectories

to reveal the goal. Recently this notion has also been studied in the task planning

community under the name of transparent planning [66]. We borrow this notion and

generalize it using the COPP framework to provide legibility of goals and plans when

the human observer has partial observability of the robot’s activities.

The problem of goal legibility is directly related to the work on goal and plan

recognition [78; 79; 31; 88; 47; 69; 77]. Traditional plan recognition systems have

focused on techniques to decipher the goals or plans being pursued by the robot,

irrespective of whether the robot is indifferent to the human observers or if it actively

cooperative or adversarial towards the observer. The notion of legible behavior makes

the inherent assumption that the robot is not indifferent to its observers and is actively

aiding the human’s process of plan or goal recognition.

In the recent years, the problem of goal recognition design (GRD) [47; 48; 49;

99; 98] has also received increasing attention. The GRD problem involves using

48

environment changing actions to simplify the problem of legibility. Such environ-

ment changing actions are a special class of actions that can change observability. If

the set of actions available to the robot include environment changing actions, the

COPP-based legible planning problem would automatically solve the problem of goal

recognition design by selecting actions that maximize legibility.

4.2 Controlled Observability Planning Problem

In this framework, we consider two agents: a robot and an observer. The robot has

full observability of its activities. However, the observer only has partial observability

of the robot’s activities. The observer is aware of the robot’s planning model and

receives observations emitted as a side effect of the robot’s execution. This framework

supports an offline setting, and therefore the observer only receives the observations

after the robot has finished executing the entire plan.

In this setting, the robot has a set of candidate goals, inclusive of its true goal.

The candidate goals are the set of possible goals that the robot may achieve in the

given environment. The observer is aware of the robot’s candidate goal set but is

unaware of the robot’s true goal. We now introduce a general COPP framework that

will be used to define the goal legibility and plan legibility problems in the upcoming

sections.

Definition 6. A controlled observability planning problem is a tuple, PCO =

〈D,G,Ω,O〉, where,

• D = 〈F ,A, I〉 is the planning domain of the robot.

• G = {G1∪G2 . . .∪Gn−1∪GA} is a set of candidate goal conditions, each defined

by subsets of fluent instantiations, where GA is the true goal of the robot.

49

• Ω = {oi|i = 1, . . . ,m} is a set of m observations that can be emitted as a result

of the action taken and the state transition.

• O : (A × S) → Ω is a many-to-one observation function which maps the ac-

tion taken and the next state reached to an observation in Ω. That is to say,

the observations are deterministic, each 〈a, s′〉 pair is associated with a single

observation but multiple pairs can be mapped to the same observation.

The observer has access to PCO, but is unaware of the true goal of the robot.

The observation function can be seen as a sensor model, as modeled in several prior

works [35; 6; 50]. The observer receives the partial observations of the robot’s exe-

cution based on the mapping of this sensor model. That is, for every action taken

by the robot and an associated state transition, the observer receives an observation.

However, a single observation may be consistent with multiple action-state pairs be-

cause of the many-to-one formulation of O. Therefore, the observer operates in the

belief space. The robot takes the belief space of the observer into account during its

planning process, so as to modulate the observability of the observer.

4.2.1 Observer’s Belief Space

The observer may use its observations of the robot’s activity to maintain a belief

state. A belief state is simply a set of possible states consistent with the observations.

We use ŝ as a notational aid to denote a state that is a member of the belief state.

Definition 7. The initial belief, b0, induced by observation, o0 is defined as, b0 =

{ŝ0 | O(∅, s0) = o0 ∧ O(∅, ŝ0) = o0}.

Whenever a new action is taken by the robot, and the state transition occurs, the

observer’s belief updates as follows:

50

Definition 8. A belief update, bi+1 for belief bi is defined as, bi+1 = update(bi, oi+1) =

{ŝi+1 | ∃â, Γ(ŝi, â) |= ŝi+1 ∧ ŝi ∈ bi ∧ O(â, ŝi+1) = oi+1}.

A sequence of belief updates gives us the observer’s belief sequence that is consis-

tent with the observation sequence emitted by the robot.

Definition 9. A belief sequence induced by a plan p starting at state s0, BS(p, s0),

is defined as a sequence of beliefs 〈bo, b1, . . . , bn〉 such that there exist o0, o1, o2, . . . , on ∈

Ω where,

• oi = O(ai, si)

• bi+1 = update(bi, oi+1)

The set of plans that are consistent with the belief sequence of a given plan are

called as belief plan set.

Definition 10. A belief plan set, BPS(p, s0) = {p1, . . . , pn}, induced by a plan

p starting at s0, is a set of plans that are formed by causally consistent chaining of

state sequences in BS(p, s0), i.e., BPS(p, s0) = {〈ŝ0, â1, ŝ1, . . . , ŝn〉 | ∀ âj, ŝj−1 |=

pre(âj) ∧ ŝj−1 ∈ bj−1 ∧ ŝj |= ŝj−1 ∪ add(âj) \ delete(âj) ∧ ŝj ∈ bj}.

The robot’s objective is to generate a belief sequence in observer’s belief space,

such that, the last belief in the sequence satisfies certain desired conditions.

4.2.2 Complexity Analysis

In this section, we discuss the complexity results for PCO. We prove that the plan

existence problem for PCO is EXPSPACE-complete.

Theorem 1. The plan existence problem for a controlled observability planning prob-

lem is EXPSPACE-hard.

51

Proof. To show that the plan existence problem for PCO is EXPSPACE-hard, we will

show that the NOD (No-Observability Deterministic) planning problem is reducible

to PCO. The plan existence problem for NOD has been shown to be EXPSPACE-

complete [39; 81].

Let PN = 〈FN ,AN , IN , GN ,V〉 be a NOD planning problem, where, FN is the

set of fluents (or Boolean state variables), such that, state s is an instantiation of

FN . AN is a set of actions, such that, when an action a ∈ AN is applied to a

state, si, a deterministic transition to the next state occurs, Γ(si, a) |= si+1. IN and

GN = {φGN
} are Boolean formulae that represent set of initial and goal states. V = ∅

is the set of observable fluents. We are considering a NOD problem, therefore there

are no observations. Since the underlying system state is unknown, the deterministic

transition function does not reveal the hidden state. PN can be expressed as a PCO

problem, PC = 〈DN , GC ,Ω,O〉, where, DN = {FN ,AN , IN}, such that IN is a set of

possible initial states, GC = {φGN
,¬φGN

} is the set of goal states, Ω = ∅ and O = ∅.

The goal set GC consists of all states: the first goal formula is common with the NOD

problem and the second one is the negation of it, which, in essence, encapsulates the

rest of the states.

Suppose πPC
= 〈a1, . . . , ar〉 is a 1-legible plan solution (see Definition 12) or 1-

ambiguous plan solution (introduced in Chapter 6) to PC , such that, Γ(IC , πPC
) |=

φGN
and the last belief br ∈ BS(πPC

, IC) satisfies |G ∈ GC : ∃ŝ ∈ br, ŝ |= G| = 1.

Then according to the definition of PN , the plan πPC
satisfies the following, ∃ŝr ∈

br, ŝr |= φGN
and therefore solves PN .

Conversely, suppose πPN
= 〈a1, . . . , aq〉 is a plan solution to PN , such that,

Γ(IN , πPN
) |= GN . Let bq be the belief associated with the last action in πPN

. Since

it achieves the goal, we can say that ∃ŝq ∈ bq, ŝq |= φGN
. Given the problem of say,

goal legibility, for legibility with respect to 1 goal, (i.e., for j = 1), bq satisfies the

52

condition. A similar argument can be made for goal obfuscation with respect to 1

goal (i.e., k = 1), which is introduced in Chapter 6. Therefore πPN
is a solution to

PC .

Theorem 2. The plan existence problem for a controlled observability planning prob-

lem is EXPSPACE-complete.

Proof. In PCO, the planner operates in belief space and the search space is bounded

by 22|F| , where |F| is the cardinality of the fluents (or Boolean state variables). If

there exists a plan solution for PCO, it must be bounded by 22|F| in length. Any

solution longer in length must have loops, which can be removed. Therefore, by

selecting actions non-deterministically, the solution can be found in at most 22|F|

steps. Hence, the plan existence problem for PCO is in NEXPSPACE. By Savitch’s

theorem [83], NEXPSPACE = EXPSPACE. Therefore, the plan existence problem

for PCO is EXPSPACE-complete.

4.2.3 Computing Solutions to COPP variants

Now we present a common algorithm template that can be used to compute plans

for the COPP problem variants.

Algorithm for Plan Computation

In our algorithm, each search node is represented by an approximate belief estimate,

which is an arbitrary ∆-sized subset of the belief state. A search node, b∆, consists

of state s and a partial belief update, b̃ (cardinality of b̃ is given by ∆− 1, where ∆ is

a counter). We borrow the concept of “width" from Geffner and Lipovetzky [36], but

we consider the width in terms of cardinality of b∆. For example, when ∆ = 1, b∆

only consists of the state s, when ∆ = 2, b∆ consists of s, followed by a state from its

53

belief such that the augmented b∆ has cardinality of 2. The successor node uses the

s in b∆ to generate the successor state, and b∆ to update its partial belief. There are

two loops in the algorithm: the outer and the inner loop. The outer loop maintains

the cardinality of b∆ by incrementing the value of ∆ in each iteration, such that value

of ∆ ranges from 1, 2, . . . , |S|. In the inner loop, a heuristic-guided forward search

(for instance, greedy best first search) can be used to search over space of belief states

of cardinality ∆. These loops ensure the complete exploration of the belief space.

Proposition 1. The algorithm necessarily terminates in finite number of |S| itera-

tions, such that, the following conditions hold:

(Completeness) The algorithm explores the complete solution space of PCO, that is,

if there exists a πPCO that correctly solves PCO, it will be found.

(Soundness) The plan, πPCO , found by the algorithm correctly solves PCO as ensured

by the corresponding goal-test.

The algorithm terminates either when a plan is found or after running the outer

loop for |S| iterations. The outer loop ensures that all the paths in the search space

are explored. The goal tests of the COPP problem variants ensure that the solutions

are correct.

Optimization

In order to speed up the search process, we perform an optimization on the afore-

mentioned algorithm. For each search node, b∆, apart from the approximate belief

estimate, we maintain the full belief update b consistent with a path to s. The ap-

proximate belief update b∆ can be generated by choosing ∆-sized combinations of

states from the complete belief. For example, when ∆ = 1, b∆ only consists of the

state s but still maintains full belief update b, when ∆ = 2, b∆ consists of a new

54

Algorithm 3 COOP Solution Plan Algorithm
Input: PCO = 〈D,G,Ω,O〉 Output: Solution πPCO , observation sequence, OPCO

1: Initialize open, closed, unopened lists and the counter ∆← 1

2: b∆ ← {I} ; b0 ← {O(∅, I)} . Initialize initial search node, initial belief

3: open.push(〈b∆, b0〉, priority = 0)

4: while ∆ 6 |S| do

5: while open 6= ∅ do

6: b∆, b, h(b∆)← open.pop()

7: if |b∆| 6= ∆ then

8: unopened.push(〈b∆, b〉, h(b∆)); continue

9: end if

10: closed← closed ∪ b∆

11: if 〈b∆, b〉 |= GOAL-TEST(G) then

12: return πPCO , OPCO

13: end if

14: for s′ ∈ successors(s) do

15: o← O(a, s′)

16: b′ ← Belief-Generation(b, o)

17: b′∆ = 〈s′, b̃′〉 . b̃′ of size ∆-1

18: h(b′∆)← HEURISTIC-FUNCTION(b′∆, b
′)

19: add b′∆ to open if not in closed

20: end for

21: end while

22: ∆← ∆ + 1

23: copy items of unopened to open, empty unopened

24: end while

55

Algorithm 4 COOP Belief Update Procedure
1: procedure Belief-Generation(b, o)

2: b′ ← {}

3: for ŝ ∈ b do

4: for â ∈ A do

5: if O(â,Γ(ŝ, â)) = o then

6: b′ ← b′ ∪ Γ(ŝ, â)

7: end if

8: end for

9: end for

10: return b′

combination of approximate belief of size 2 derived from the maintained full belief.

When ∆ = 1, because of the check for duplicate states in the closed list, only one

path to the search node is explored. Therefore, the use of ∆ allows the search process

to explore multiple paths leading to a particular search node. The complete b helps

in finding the problem variant solutions faster at lower ∆ values. We present the

details of the optimization in Algorithm 3 and the belief generation procedure used

by Algorithm 3 in Algorithm 4. In the following sections, we show how we customize

the goal-test (line 11) and the heuristic function (line 18) to suit the needs of each of

the COPP problem variants.

4.2.4 Variants of COPP

Within this framework, we will discuss the problem of goal legibility and plan

legibility. With goal legibility, the objective of the robot is to convey at most j goals

to the observer among the set of n candidate goals. With plan legibility, the set of

candidate goals consists of only one goal, which is the robot’s true goal. Even though

56

this goal is known to the observer, the objective of the robot with plan legibility is to

convey to the observer at least m similar plans to the goal. We will see both of these

problems in detail in the following sections. The COPP framework can be also used

in adversarial environments. These variants will be covered in Chapter 6.

4.3 Goal Legibility

In this setting, the robot’s objective is to convey some information about its

candidate goal set to the human observer. This may involve communicating its true

goal to the human, by ensuring at most one goal is consistent with the observation

sequence produced. Or in general, the robot may want to communicate a set of at

most j candidate goals inclusive of its true goal, to the human observer. Essentially,

the point with goal legibility is to reduce the observer’s ambiguity over the robot’s

possible goal set by narrowing it down to at most j goals.

Example

Let’s understand this problem with an example. Consider a situation where the robot

is a port management agent and the observer has sensors or informants at the port

who provide partial information about the nature of activity being carried out at the

port (refer Figure 4.1). For instance, when a specific crate is loaded onto the ship,

the observer finds out that something was loaded, but not the identity of the loaded

crate. The observer knows the initial inventory at the port, but when new cargo is

acquired by the port, the observer’s sensors reveal only that more cargo was received;

they do not specify the numbers or identities of the received crates. A legible plan for

loading the sensitive cargo (the red crate) and acquiring more cargo may first load

the crate and then acquire more crates. This plan reveals the identity of the crate

that was loaded based on the observers’ information about the remaining cargo in

57

(a)

(b)

Figure 4.1: The Differences in Belief Sequences Induced by Different Plans for an

Observer with Noisy Sensors.

58

the port: the final belief state has a unique crate loaded on the ship even though it

retains uncertainty about the new cargo in the port. However, if the plan were to first

acquire more cargo, the observer’s sensors are insufficient to determine which crate

was loaded: the plan maintains ambiguity in the observer’s belief. This is reflected

in the observer’s belief state sequence, where the last belief state includes states with

all different types of crates in the ship. Although both plans have the same cost and

effects for the dock, one conveys the activity being carried out while the other adds

more uncertainty. The COPP framework allows the robot to select plans that are

legible in this manner.

Goal Legibility Planning Problem

In goal legibility problem, the robot’s aim is to take actions exclusive to the goal so as

to help the observer in goal deduction. Here we generalize the notion of goal legibility

with respect to j number of goals.

Definition 11. A goal legibility planning problem is a PCO, where, G = {GA ∪

G1 ∪ . . . ∪ Gn−1} is the set of n goals where GA is the true goal of the robot, and

G1, . . . , Gn−1 are the confounding goals.

To solve this problem, the robot can generate a plan that conveys at most j

candidate goals inclusive of its true goal. The robot has to ensure that the observation

sequence of a legible plan is consistent with at most j goals so as to limit the number

of goals in the observer’s final belief state.

Definition 12. A plan, πj, is a j-legible plan, if Γ(I, πj) |= GA and the last belief,

bn ∈ BS(πj, I), satisfies the following, |G ∈ G : ∃s ∈ bn, s |= G| 6 j, where 1 6 j 6 n.

59

Goal Diversity

Note that, the solutions to the goal legibility planning problems can be expressed in

terms of a goal diversity measure in general. A goal diversity measure can be used

to establish the extent of diversity among the set of goals present in the observer’s

belief. For instance, a simple goal diversity measure could be the cardinality of the

goals satisfied in the last belief state, which is the measure admitted by Definition

12. However, other goal diversity measures can also be used to define the problems

of goal legibility, and then j-legible solutions can be written as at most j goal-diverse.

4.3.1 Computing Goal Legible Plans

In the case of goal legibility, we run COPP search Algorithm 3 customized with

the following goal test and heuristic function.

Goal test

In order to ensure that the computed plan is consistent with at most j true goals, we

change our goal condition to additionally check whether at most j − 1 confounding

goals have been achieved in the observer’s final belief, or it can be interpreted as at

least n− j goals are absent in the final belief.

Heuristic function

In this case, the robot’s objective is to avoid at least n−j goals, that is to be consistent

with at most j goals. We achieve this by minimizing the heuristic cost to the true

goal from the robot’s actual state and to the j−1 confounding goals from the robot’s

belief state. However, we maximize the heuristic cost to other n− j goals in order to

60

Figure 4.2: Illustration of the Impact of Plan Legibility on the Observer’s Plan Infer-

ence Process.

achieve at most j goals in the last belief state. This is written as,

h(s) = hGA
(s) + hGj−1

(b)− hGn−j
(b) (4.1)

4.4 Plan Legibility

In this problem setting, the observer is aware of the robot’s goal, since the can-

didate goal set consists of a single goal. Although, the observer is unaware of the

robot’s choice of plan to achieve that goal. In general, there can be multiple different

plans that allow the robot to achieve a goal. This is further complicated by the fact

that the observer has partial observability of the robot’s activities. Therefore, in this

problem setting the goal of the robot is to reduce the ambiguity over the possible

plans to its goal. The robot can achieve this, by computing a plan whose observation

sequence conforms to a set of plans that are similar in terms of their actions, thereby

making it easy for the observer to guess the actions executed by the agent.

For instance, in Figure 4.2, the goal of the agent is to pick up a medkit and

treat the victim on the disaster site. The observer has a noisy sensor model and it

is not accurate enough to give the exact cell location of the robot. Therefore, the

61

observer relies on how many steps the robot has moved to guess the robot’s path of

execution. In the initial state shown in the leftmost subfigure in Figure 4.2, it can be

seen that the robot has two choices of medkits to pick from. If it chooses the medkit

as shown in the rightmost sub-figure, there are only two paths of length 2 towards the

medkit and one path of length 2 towards the victim. In comparison, the middle sub-

figure, shows the various different paths of length 4 that can lead to the other medkit,

making it harder for the human to guess the robot’s actions. Therefore, to reduce

the ambiguity over its path, the robot chooses the medkit shown in the rightmost

figure. This involves an observation sequence with two similar paths leading to the

goal, making it easy for the human to guess some of the actions of the robot. Thus,

the plan legibility problem can be solved by finding an observation sequence that is

consistent with plans that are similar to each other.

Definition 13. A plan legibility planning problem is a tuple, PPL = 〈D,GPL,Ω,

O〉, where, |GPL| = 1.

4.4.1 Computing Plan Legible Plans

The solution to a plan legibility problem is an m-similar plan. An m-similar plan

is a plan whose observation sequence is consistent with at least m similar plans to the

goal, such that, these plans are at most d distance away from each other. In order to

compute anm-similar plan, we need to keep track of the plans that are consistent with

the observation sequence and reach the goal. To compute the diversity between all

the pairs of plans consistent with the observation sequence, a plan distance measure

[93; 74] like action distance, causal link distance, state sequence distance (introduced

in Chapter 3) can be used. This approach can use any valid plan distance. We now

define an m-similar plan.

62

Definition 14. Two plans, p1, p2, are a d-distant pair with respect to distance

function δ if, δ(p1, p2) = d, where δ is a diversity measure.

We use the belief plan set (BPS) introduced in Section 4.2 to define maximally

d-distant pairs of plans associated with an observation sequence.

Definition 15. A BPS induced by plan p starting at s0 is maximally d-distant,

dmax(BPS(p, s0)), if d = max
p1,p2∈BPS(p,s0)

δ(p1, p2).

Definition 16. A plan, πm, is an m-similar plan, if for a given value of d and

distance function δ, dmax(BPS(πm, I)) ≤ d, |BPS(πm, I)| ≥ m, where m ≥ 2 and

every plan in BPS(πm, I) achieves the goal in GPL.

In order to generate a solution to the plan legibility problem, we use the algorithm

presented in Algorithm 3. Again, the goal test and heuristic function are customized

to ensure that there are at least m similar plans to the true goal that are consistent

with the observation sequence and the maximum distance between these plans is at

most d.

Goal test

To ensure that the plans in BPS, induced by an m-similar plan, can achieve the goal

in GPL, we check whether at least m plans are reaching the goal or not and whether

the maximum distance between plans in BPS is at most d. Also in order to ensure

termination of the algorithm, there is a cost-bound given as input to the algorithm.

Heuristic function

Apart from minimizing the heuristic cost to the goal, the customized heuristic given

below also minimizes the d of dmax(BPS(p, s0)) induced by plan p starting at s0. This

63

decreases the maximum distance between the plan pairs in the BPS. This distance

can be computed using a plan distance measure.

h(s) = hGA
(s) + dmax(BPS(p, s0)) (4.2)

Plan Legibility as Offline Predictability

Plan legibility has been likened to the notion of offline predictability in a recent

survey on different types of interpretable behaviors [15]. This is because plan legible

behaviors allows the robot to reduce the observer’s ambiguity over the possible plans

that can be executed given a goal, which is also a property exhibited by predictable

behaviors. However, predictable behaviors are also inherently easy to anticipate,

either globally or locally. Globally predictable behavior [30] is a behavior that an

observer would anticipate the robot to perform given a certain goal, versus locally

predictable behavior [34] is a behavior where given a plan prefix, the rest of the

suffix towards the given goal can be easily anticipated by the observer. This notion of

predictability has been mostly explored in the motion planning community. However,

plan legibility does not always lead to predictable behaviors. This is because in

plan legibility, the emphasis is on making the robot’s actions easy to guess given

a corresponding observation sequence. However, the observation sequence in itself

might not be globally or even locally predictable to the observer.

4.5 Empirical Evaluation of COPP Problem Variants

We now present an empirical evaluation of the solution approach presented in

Section 4.2 to solve the goal legibility and plan legibility variants of COPP. Through

evaluation, we intend to investigate the following objectives (1) comparison between

run time and plan costs across the two problem variants versus the optimal solution

to the true goal, (2) impact of ∆ in Algorithm 3 for goal legibility.

64

Domain Metrics j-leg m-sim opt

Blocksworld
Time 213.68 100.96 0.99

Length 12.4 11.28 9.6

Logistics
Time 247.9 45.05 8.31

Length 27.25 27.94 23.74

Driverlog
Time 186.05 58.52 1.54

Length 13.5 12.95 11.16

Table 4.1: Empirical Evaluation for the Two COPP Problem Variants Using the Op-

timization Presented in Algorithm 3 Versus the Optimal Plan Solution (Opt Column)

to the True Goal. We Report the Average Time (in Seconds) and the Average Plan

Length.

4.5.1 Domains and Experimental Setup

We use three IPC domains, namely Blocksworld, Logistics and Driverlog to

evaluate our approach. For each of the domains, we randomly generated 50 problem

instances. For the Blocksworld domain, we generated problems with 4 to 8 blocks

and towers of maximum height 5 for both initial and goal states. After grounding, the

smallest problem had 29 variables and 40 operators, and the largest problem had 89

variables and 144 operators. For the Logistics domain, we generated problems with

goals consisting of 2 to 6 facts. After grounding, the smallest problem had 63 variables

and 78 operators, and the largest problem had 63 variables and 198 operators. For the

Driverlog domain, we generated problems with goals consisting of 2 to 6 facts. After

grounding, the smallest problem had 33 variables and 100 operators, and the largest

problem had 61 variables and 180 operators. We generated 5 random candidate goals

(n=5) for each problem.

65

Figure 4.3: Empirical Evaluation of ∆ in Algorithm 3 for Goal Legibility Variant.

We Report the Number of Problem Instances Solved for Different Values of ∆.

The partially observable models have many-to-one mapping of action-state pairs

to observation symbols. For the sake of simplicity, we used lifted action names as ob-

servation symbols. The grounded actions taken and associated states are mapped to

the corresponding lifted action names. For the Blocksworld domain, the observation

symbols were pickup, putdown, stack, unstack. For the Logistics domain, the obser-

vation symbols were load-truck, unload-truck, load-airplane, unload-airplane, drive-

truck, fly-airplane. Finally, for the Driverlog domain, the symbols were load-truck,

unload-truck, board-truck, disembark-truck, drive-truck, walk.

4.5.2 Results

The evalution results are presented in Table 4.1 and Figure 4.3. We modified the

STRIPS planner Pyperplan [1] to implement our algorithms. We used the hsa [53]

66

heuristic of Pyperplan because it gave the best results in terms of computation time.

We ran the experiments with j = 2, m = 3, and dmax = 0.50 for all the domains.

We used action distance measure to compute the distance between plans. We ran

our experiments on 12 core Intel Xeon CPU with an E5-2643 v3@3.40GHz processor

with a 64G RAM with 20 minutes time-out. The following number of problems

reached time-out before a solution could be found for the problem variants: 8/50 in

the Blocksworld, 11/50 in Logistics and 6/50 in Driverlog. These problems were

excluded from the results to ensure consistency across problems.

The Table 4.1 presents a comparison between the two different variants of the

COPP framework. The j-leg solution takes slightly longer time. This is because, we

have to ensure that at most j goals are present, which can be translated as at least

n− j goals are absent. For j-leg, we used 3 goals, where at most 2 goals were allowed,

and at least 1 was disallowed to be present in the solution. For m-sim, the run time

cost comes from maintaining BPS for each node. We also compare the time taken to

compute an optimal plan to the true goal represented by the opt column. In general,

both the COPP variants require comparatively longer run-time than the optimal

plans due to the additional processing overhead resulting from modulating observer’s

beliefs. From Figure 4.3, we see that for goal legibility, most of the solutions are

obtained for lower values of ∆, for all the 3 domains. That is, we can obtain solutions

to the goal legibility problems in the first few iterations of the outer loop of Algorithm

3.

4.6 Concluding Remarks

We described the controlled observability planning framework in this chapter.

Since the human observer has imperfect observations about the robot’s activities, she

operates in a belief state. Within this framework, we formulated the problems of goal

67

legibility and plan legibility. With goal legibility, the robot can convey at most j

candidate goals (inclusive of its true goal) to the observer. While with plan legibility,

the robot can make its activities legible by performing an m-similar plan whose

observation sequence entails at least m plans that are at most d distance apart. We

showed that these behaviors could be synthesized using a single algorithmic template.

We evaluated the feasibility and performance of our approach using IPC domains.

68

Chapter 5

ENVIRONMENT DESIGN TO FACILITATE EXPLICABLE BEHAVIOR

In this chapter, we will see how environment design approaches can be leveraged

to make the environment, in which a robot and a human are interacting, more con-

ducive to explicable robot behaviors. Whenever there are inconsistencies between the

human’s mental model of the robot and the robot’s model, it should be able to reason

over these inconsistencies to either generate explicable behavior, which is consistent

with the human’s expectations of its behavior [102; 57], or, explain its behavior with

respect to the inconsistencies in the human’s mental model [19; 92; 91]. However,

the environment in which the robot is operating may not always be conducive to

explicable behavior and/or to communicating explanations. As a result, making its

behavior explicable may be prohibitively expensive for the robot. In addition, certain

behaviors that are explicable with respect to the human’s mental model may not be

feasible for the robot.

Fortunately, in highly structured settings, where the robot is expected to solve

repetitive tasks (like in warehouses, factory floors, restaurants, etc.), it might be fea-

sible to redesign the environment in a way that improves explicability of the robot’s

behavior, given a set of tasks. This brings us to the notion of environment design

which involves redesigning the environment to maximize (or minimize) some objective

for the robot (like, optimal-cost to a goal, desired behavioral property) [101]. Thus,

environment design can be used to boost the explicability of the robot’s behavior,

especially in settings that require solving repetitive tasks. Further, a one-time envi-

ronment design cost to boost explicable behavior might be preferable over the repet-

itive cost overhead of explicable behavior borne by the robot. While the problem of

69

environment design for planning problems has been investigated under the umbrella

of goal and plan recognition design [47; 72], they only form a subset of interpretable

behaviors studied in the existing literature [14]. To the best of our knowledge, we are

the first to explore the notion of environment design to maximize the explicability of

a robot’s behavior.

However, environment design alone may not be a panacea for explicability. For

one, the design could be quite expensive, not only in terms of making the required

environment changes but also in terms of limiting the capabilities of the robot. More-

over, in many cases, there may not be a single set of design modifications that will

work for a given set of tasks. For instance, designing a robot with wheels for efficient

navigation on the floor will not optimize the robot’s motion up a stairwell. This

means, to achieve truly effective synergy with autonomous robots in a shared space,

we need a greater synthesis of environment design and human-aware behavior gener-

ation. This leads us to investigate a novel optimization space, that requires trading

off one-time (but potentially expensive) design changes, against repetitive costs borne

by the robot to exhibit explicable behavior.

In this work we propose a new design framework that balances the cost of modi-

fying the environment with the cost of inexplicability of a robot’s behavior given the

human’s mental model, and optimizes this objective given a set of tasks over a time

horizon. Our work is the first to model the longitudinal aspect of explicable behav-

ior, which captures the human’s tolerance to inexplicability resulting from repetitive

execution of tasks over a time horizon. While this has been an issue with existing for-

mulations of explicable behavior, the longitudinal impact of inexplicability becomes

especially critical in the context of environment design which affects agents more per-

manently. We leverage a planning compilation [90] to generate the most explicable

plan for a task in a given environment and explore its theoretical properties. Through

70

(a) Explicable Behavior Is Costlier Without Design.

(b) Optimal Behavior Is Explicable with Design.

Figure 5.1: Use of Environment Design to Improve the Explicability of a Robot’s

Behavior in a Shared Environment.

empirical evaluation and demonstration of our approach in a simulated domain, we

examine the properties of our optimization criterion and the various trade-offs that

result from it.

Example

Consider a restaurant with a robot server (Figure 5.1a). Let G1 and G2 represent

the robot’s possible goals of serving the two booths: it travels between the kitchen

and the two booths. The observers consist of customers at the restaurant. Given

the position of the kitchen, the observers may have expectations on the route taken

71

by the robot. However, unbeknownst to the observers, the robot can not traverse

between the two tables and can only take the route around the tables. Therefore, the

path marked in red is the cheapest path for the robot but the observers expect the

robot to take the path marked in green in Figure 5.1a.

In this environment, there is no way for the robot to behave as per the human’s ex-

pectations. Applying environment design provides us with alternatives. For example,

the designer could choose to build two barriers as shown in Figure 5.1b. With these

barriers in place, the humans would expect the robot to follow the path highlighted

in green. However, whether it is preferable to perform environment modifications

or to bear the impact of inexplicable behavior depends on the cost of changing the

environment versus the cost of inexplicability caused by the behavior.

In the upcoming sections, we will explore the details of this trade-off. We will

also briefly discuss the formulation of the problem of environment redesign for other

interpretable behaviors like legibility and predictability and how it is connected to

the existing work on goal recognition design and plan recognition design respectively.

5.1 Related Work

This work explores the connection between two parallel threads of active research:

one on environment design and the other on explicable behavior (introduced in Chap-

ter 3). The problem of environment design is connected to that of mechanism design

[73], which has been thoroughly investigated by the game theory community. En-

vironment design [101] involves modifying the environment so as to maximize or

minimize some objective for an agent [52]. The problem of design has been lever-

aged to simplify related problems like goal recognition [47], plan recognition [72], etc.

These works have studied the possibility of modifying the environment so as to make

the robot’s behavior easily recognizable. The design modifications can be applied to

72

a robot’s model in the form of action conditioning [51] or action pruning [47]. Such

design strategies limit a certain set of actions from being applied either because of

conditioning on other actions or because of being pruned altogether. Similarly, design

modification in the form of sensor refinement [51] and sensor placement [50] can be

applied to the observer’s model, so as to improve the observer’s recognition of the

robot’s goal. The problem of environment design has also been studied for stochastic

actions [99; 98].

5.2 Background

We consider two agents: a robot and a human observer. In this section, we

introduce the notion of inexplicability score and the problem of environment design

with respect to these two agents.

Inexplicability Score

MR = 〈F ,AR, IR,GR, cR〉 is the robot’s model captured as a planning problem. The

need for generating explicable behavior arises because the robot’s planning model is

different from the human’s mental model of it. The difference can be in terms of a set

of actions, the initial state or goal of the robot. Thus an explicable planning problem

is PExp = 〈MR,MR
h , δMR

h
〉, whereMR

h = 〈F ,ARh , IRh ,GRh , cRh 〉 represents the human’s

mental model of the robot model, and δMR
h
is a distance function used by the human

to compute the explicability of a plan. We assume the human mental model is given

as an input. This is usually the case when any product is deployed and developers

capture a generic user model which can be learned from prior interactions. In this

work, we only focus on the reasoning aspects once we have the model, rather than

focusing on the acquisition of such a model. Π∗MR
h

represents the set of expected

plans with respect toMR
h . A valid plan that solvesMR can exist anywhere on the

73

spectrum of inexplicability from high to low.

Definition 17. The inexplicability score, IE(·, ·, ·), of the robot’s plan πR that

solves MR is defined as follows for the human’s mental model MR
h and a distance

function δMR
h

(·, ·):

IE(πR,MR
h , δMR

h
) = min

πR
h ∈Π∗

MR
h

δMR
h

(πR, πRh) (5.1)

where δMR
h

(·, ·) is a distance function that assesses the difference between the two

plans πR and πRh .

The robot’s objective is to minimize the inexplicability score in the human’s men-

tal model. We will use the notation Π∗IE(·,MR
h ,δMR

h
)
(in the absence of the parameter

πR) to refer to the set of plans in the robot’s model with the lowest inexplicabil-

ity score, and IEmin(PExp) to represent the lowest inexplicability score associated

with the set. Further, let fExp be the decision function used by the explicable

robot: fExp(PExp) represents the cheapest plan that minimizes the inexplicability

score, i.e. fExp(PExp) ∈ Π∗IE(·,MR
h ,δMR

h
)
and ¬∃π′ : π′ ∈ Π∗IE(·,MR

h ,δMR
h

)
such that

cR(π′) < cR(fExp(PExp)).

5.2.1 Environment Design

An environment design problem [101] takes as input the initial environment con-

figuration along with a set of available modifications and computes a subset of mod-

ifications that can be applied to the initial environment to derive a new environment

in which a desired objective is optimized.

We consider MR0
= 〈F0,AR0

, IR0
,GR0

, cR
0〉 as the initial environment and ρR

as the set of valid configurations of that environment: MR0 ∈ ρR. Let O be an

arbitrary metric that needs to be optimized with environment design, i.e a planning

74

model with lower value for O is preferred. A design problem (adapted from [101]) is a

tuple 〈MR0
,∆,ΛR, C,O〉 where, ∆ is the set of all modifications, ΛR : ρR× 2∆ → ρR

is the model transition function that specifies the resulting model after applying a

subset of modifications to the existing model, C : ∆ → R is the cost function that

maps each design choice to its cost. The modifications are independent of each other

and their costs are additive. We will overload the notation and use C as the cost

function for a subset of modifications as well, i.e. C(ξ) =
∑

ξi∈ξ C(ξ).

The set of possible modifications could include modifications to the state space,

action preconditions, action effects, action costs, initial state and goal. In general,

the space of design modifications, which are an input to our system, may also involve

modifications to the robot itself (since the robot is part of the environment that is

being modified). An optimal solution to a design problem identifies the subset of

design modifications, ξ, that minimizes the following objective consisting of the cost

of modifications and the metric O: minO(ΛR(MR0
, ξ)), C(ξ).

5.3 Design for Explicability

In this framework, we not only discuss the problem of environment design with

respect to explicability but also in the context of (1) a set of tasks that the robot has

to perform in the environment, and (2) over the lifetime of the tasks i.e. the time

horizon over which the robot is expected to repeat the execution of the given set of

tasks. These considerations add an additional dimension to the environment design

problem since the design will have lasting effects on the robot’s behavior. In the

following, we will first introduce the design problem for a single explicable planning

problem, then extend it to a set of explicable planning problems and lastly extend it

over a time horizon.

75

5.3.1 Design for a Single Explicable Problem

In the design problem for explicability, the inexplicability score becomes the metric

that we want to optimize for. That is we want to find an environment design such

that the inexplicability score is reduced in the new environment. This problem can

be defined as follows:

Definition 18. The design problem for explicability is a tuple,

DPExp = 〈P0
Exp,∆,ΛExp, C, IEmin〉, where:

• P0
Exp ∈ ρExp is the initial configuration of the explicable planning problem, where

ρExp represents the set of valid configurations for PExp.

• ∆ is the set of available design modifications. The space of all possible modifi-

cations is the power-set 2∆.

• ΛExp : ρExp × 2∆ → ρExp is the transition function over the explicable planning

problem, which gives an updated problem after applying the modifications.

• C is the additive cost associated with each design in ∆.

• IEmin : ρExp → R+ is the minimum possible inexplicability score in a configu-

ration, i.e. the inexplicability score associated with the most explicable plan.

With respect to our motivating example in Figure 5.1a, DPExp is the problem of

designing the environment to improve the robot’s explicability given its task of serving

every new customer at a booth (say G1) only once. The optimal solution to DPExp

involves finding a configuration which minimizes the minimum inexplicability score.

We also need to take into account an additional optimization metric which is the

effect of design modifications on the robot’s plan cost. That is, we need to examine

to what extent the decrease in inexplicability is coming at the robot’s expense. For

76

instance, if you confine the robot to a cage so that it cannot move, its behavior

becomes completely and trivially explicable, but the cost of achieving its goals goes

to infinity.

Definition 19. An optimal solution to DPExp, is a subset of modifications ξ∗ that

minimizes the following:

min IEmin(P∗Exp), C(ξ∗), cR(fExp(P∗Exp)) (5.2)

where P∗Exp = ΛExp(P0
Exp, ξ

∗) is the final modified explicable planning problem, IEmin(·)

represents the minimum possible inexplicability score for a given configuration, C(ξ∗)

denotes the cost of the design modifications and cR(fExp(P∗Exp)) is the cost of the

cheapest most explicable plan in a configuration.

5.3.2 Design for Multiple Explicable Problems

We will now show how DPExp evolves when there are multiple explicable planning

problems in the environment that the robot needs to solve. When there are multiple

tasks there may not exist a single set of design modifications that may benefit all the

tasks. In such cases, a solution might involve performing design modifications that

benefit some subset of the tasks while allowing the robot to act explicably with respect

to the remaining set of tasks. Let there be k explicable planning problems, given

by the set PExp = {〈MR(0),MR
h (0), δMR

h (0)〉, . . . , 〈MR(k),MR
h (k), δMR

h (k)〉}, with a

categorical probability distribution D over the problems. We use PExp(i) ∈ PExp to

denote the ith explicable planning problem. These k explicable problems may differ

in terms of their initial state and goal conditions. Now the design problem can be

defined as:

DPExp,D = 〈P0
Exp,D,∆,ΛExp, C, IEmin,D〉, (5.3)

77

where P0
Exp, is the set of planning tasks in the initial environment configuration,

IEmin,D is a function that computes the minimum possible inexplicability score in

a given environment configuration by taking the expectation over the minimum

inexplicability score for each explicable planning problem, i.e., IEmin,D(PExp) =

E[IEmin(PExp)], where PExp ∼ D. With respect to our running example, DPExp,D is

the problem of designing the environment given the robot’s task of serving every new

customer only once at either of the booths (G1, G2) with probability given by D.

The solution to DPExp,D has to take into account the distribution over the set of

explicable planning problems. Therefore the optimal solution is given by:

min IEmin,D(P∗Exp), C(ξ∗), E[cR(fExp(P∗Exp))] (5.4)

where P∗Exp ∼ D. A valid configuration minimizes the minimum possible inexplicabil-

ity score, which involves 1) expectation over minimum inexplicability scores for each

explicable planning problem; 2) the cost of the design modifications (these modifica-

tions are applied to each explicable planning problem); and 3) the expectation over

the cheapest most explicable plan for each explicable planning problem.

5.3.3 Longitudinal Impact on Explicable Behavior

The process of applying design modifications to an environment makes more sense

if the tasks are going to be performed repeatedly in the presence of a human (i.e. the

robot does not have to bear the cost of being explicable repeatedly). This has quite

a different temporal characteristic in comparison to that of execution of one-time

explicable behavior. For instance, design changes are associated with a one-time cost

(i.e. the cost of applying those changes in the environment). On the other hand, if we

are relying on the robot to execute explicable plans at the cost of foregoing optimal

plans, then it needs to bear this cost multiple times in the presence of a human over

78

Figure 5.2: Illustration of Longitudinal Impact on Explicability. Prob Determines

the Probability Associated with Executing Each Task in PExp. For Each Task, the

Reward Is Determined by the Inexplicability Score of That Task. The Probability of

Achieving This Reward Is Determined by γ × Probability of Executing That Task.

Additionally, with a Probability (1 − γ) the Human Ignores the Inexplicability of a

Task and the Associated Reward Is given by an Inexplicability Score Of 0.

the time horizon.

We will use a discrete time formulation where the design problem is associated

with a time horizon T . At each time step, one of the k explicable planning problems

is chosen. Now the design problem can be defined as:

DPExp,D,T = 〈P0
Exp,D,∆,ΛExp, C, IEmin,D, T 〉 (5.5)

In our running example, DPExp,D,T is the problem of designing the environment

given the robot’s task of serving the same customer at either of the booths with a

distribution D over a horizon T .

In the past literature, the explicable behavior has been studied with respect to

a single interaction with a human over a given task [102; 57]. However, we consider

79

a time horizon, T > 1, over which the robot’s interaction with the human may be

repeated multiple times for the same task. This means the human’s expectations

about the task can evolve over time. This may not be a problem if the robot’s

behavior aligns perfectly with the human’s expectations. Although, if the robot’s

plan for a given task is associated with a non-zero inexplicability score, then the

human is likely to be more surprised the very first time she notices the inexplicable

behavior than she would be if she noticed the inexplicable behavior subsequent times.

As the task is performed over and over, the amount of surprise associated with the

inexplicable behavior starts decreasing. In fact, there is a probability that the human

may ignore the inexplicability of the robot’s behavior after sufficient repetitions of

the task. We incorporate this intuition by using discounting.

Figure 5.2 illustrates the Markov reward process to represent the dynamics of

this system. Let (1 − γ) denote the probability that the human will ignore the

inexplicability of the robot’s plan, i.e, the reward will have inexplicability score 0. γ

times the probability of executing a task represents the probability that the reward

will have the minimum inexplicability score associated with that task. Assuming

γ < 1, the minimum possible inexplicability score for a set of explicable planning

problems is:

fT (IEmin,D(PExp)) = IEmin,D(PExp)

+ γ ∗ IEmin,D(PExp) + . . .+

γT−1 ∗ IEmin,D(PExp)

fT (IEmin,D(PExp)) =
1− γT

1− γ
∗ IEmin,D(PExp) (5.6)

80

Thus the optimal solution to DPExp,D,T is given by:

min fT (IEmin,D(P∗Exp)), C(ξ∗),

E[cR(fExp(P∗Exp))] ∗ T (5.7)

where, P∗Exp ∼ D. The optimal solution is a valid configuration that minimizes 1)

the minimum possible inexplicability over the set of explicable planning problems

given the human’s tolerance to inexplicable behavior; 2) one-time cost of the design

modifications; and 3) the expectation over the cheapest most explicable plan for each

explicable planning problem given a time horizon. Note that, since the design cost

is not discounted and we always make the design changes before the task is solved,

there is never a reason to delay the design execution to future steps in the horizon.

Instead it can be executed before the first time step.

5.4 Solution Methodology

We now discuss a solution strategy for our design problem when a cost-based

distance function (δcMR
h
) is used to determine the inexplicability of a plan. Given a

plan π, such that, ΓMR(IR, π) |= GR, the distance from an expected plan π′ in the

human model is given as δcMR
h

(π, π′) =


exp(|cRh (π)− cRh (π′)|), if ΓMR

h
(IRh , π) |= GRh

∞, otherwise

(5.8)

Here, we will use the set of plans that are optimal in the human’s mental model

as the expected plan set. This means that for calculating Equation 5.1, we do not

require an additional minimization over the space of expected plans as every plan

in the robot’s model should be equidistant from every optimal plan in the human’s

81

mental model (and the distance is infinity if the current robot plan is not executable in

the human’s mental model). For brevity, we refer to any plan with infinite inexplicable

score as being invalid for a problem in PExp. Also, we assume that the actions in

both the models have unit costs. That is, cRh (π) = cR(π) = |π|.

Proposition 2. ∀i ∈ 1, . . . , k, π, π′ ∈ Π∗IE(·,MR
h (i),δMR

h
(i)

)
,

cR(π) = cR(π′).

The above proposition states that all plans in Π∗IE(·,MR
h (i),δMR

h
(i)

)
have equal costs

in MR(i) due to the assumption of unit costs. Therefore, while calculating the

value for the objective function of DPExp,D,T , we can choose an arbitrary plan from

Π∗IE(·,MR
h (i),δMR

h
(i)

)
to calculate the term corresponding to the robot’s cost.

5.4.1 Search for Optimal Design

To find the optimal solution for DPExp,D,T , we will perform a breadth-first search

over the space of environment configurations that are achievable from the initial

configuration through the application of the given set of modifications [51]. The

performance of the search depends on the number of designs available. By choosing

appropriate design strategies, significant scale up can be attained. Each search node is

a valid environment configuration and the possible actions are the applicable designs.

For simplicity, we convert the multi-objective optimization in Equation 5.2 into a

single objective as a linear combination of each term associated with a coefficients α, β,

and κ, respectively. The value of each node is decided by the aforementioned objective

function. For each node, it is straightforward to calculate the design modification cost.

However, in order to calculate the minimum inexplicability score and the robot’s plan

cost, we have to generate a plan that minimizes the inexplicability score for each

explicable planning problem in that environment configuration. To achieve this, we

82

compile the problem of generating the explicable plan to a classical planning problem.

We will discuss this compilation in the following subsection. Essentially, our search

has two loops: the outer loop which explores all valid environment configurations,

and the inner loop which performs search in a valid environment configuration to find

a plan that minimizes the inexplicability score. At the end of the search, the node

with best value is chosen, and the corresponding set of design modifications, ξ∗, is

output.

One way to optimize our search over the space of environment configurations is

to only consider the designs that are relevant to the actions in the optimal robot

plans (Π∗MR) and those in the human’s expected plans (Π∗
MR

h
) given the set of tasks.

This can be implemented as a pruning strategy that prunes out designs that are not

relevant to the actions.

5.4.2 Compilation for Most Explicable Plan

We show that generating the most explicable plan for a PExp = 〈MR,MR
h , δMR

h
〉

is the same as generating an optimal plan, π∗mod, for a transformed planning problem

Pmod. To this end, we leverage the compilation used by [90] and present a simplified

version.

Definition 20. Given an explicable planning problem, PExp = 〈MR,MR
h , δMR

h
〉, the

transformed planning problem is Pmod = 〈Fmod,Amod, Imod,Gmod, cmod〉, where,

• Fmod = FR ∪ FRh

• For each amod ∈ Amod, amod = 〈pre(amod), add(amod), del(amod)〉, where:

pre(amod) = {fR|f ∈ pre(aR)} ∪ {fRh |f ∈ pre(aRh)}

add(amod) = {fR|f ∈ add(aR)} ∪ {fRh |f ∈ add(aRh)}

del(amod) = {fR|f ∈ del(aR)} ∪ {fRh |f ∈ del(aRh)}

83

• Imod = {fR|f ∈ IR} ∪ {fRh |f ∈ IRh }, and

Gmod = {fR|f ∈ GR} ∪ {fRh |f ∈ GRh }

• For each amod ∈ Amod, cmod(amod) = cRh (aRh) = 1

We label the fluents with different subscripts to denote that we maintain two

separate copies of fluents in the transformed planning problem: i.e., for every f ∈ F ,

there is robot’s fluent, fR ∈ FR and the human’s belief about it, fRh ∈ FRh . We

assume there is a one to one mapping between the actions in the robot’s model and

those in the human’s mental model, so there are two versions of each action. The

action transformation ensures that an action is executable by the robot if and only if

its preconditions are satisfied in bothMR andMR
h , and it produces effects consistent

with both models.

Proposition 3. The problem Pmod produces a plan that solves PExp, so that the

following properties hold:

• Soundness A plan πmod that solves Pmod is a valid solution for PExp.

• Completeness For every valid plan that solves PExp, there is a corresponding

valid plan that solves Pmod.

• Optimality A plan π∗mod that solves Pmod optimally is the most explicable plan

for PExp.

Proof. The transformed planning problem has the union of the constraints imposed

by both MR and MR
h . Given a plan π, such that, ΓPmod

(Imod, π) |= Gmod, by the

definition of the compilation, we also have ΓMR(IR, π) |= GR and ΓMR
h

(IRh , π) |= GRh .

Hence, a plan πmod that solves Pmod is a valid plan for PExp.

84

From the definition of the inexplicability score for a plan πR which is a valid

solution to PExp, we know that ΓMR
h

(IRh , πR) |= GRh . Such a plan πR solves bothMR

andMR
h . Hence, πR will satisfy, ΓPmod

(Imod, πR) |= Gmod. Therefore, for every valid

plan that solves PExp, there exists a corresponding plan that solves Pmod.

Given PExp, let π′ be the most explicable robot plan (the plan with lowest inex-

plicability score) which is not an optimal plan for Pmod. By definition of explicability,

this means π′ must be a valid plan for both MR and MR
h . Further, by the com-

pleteness property, we know that π′ must be a valid plan for Pmod. This means

that for a plan π∗mod optimal in Pmod, we have cRh (π∗mod) < cRh (π′) (since Pmod uses

cRh). Hence, |cRh (π∗mod) − cRh
∗| < |cRh (π′) − cRh

∗|, where cRh
∗ is the cost of an opti-

mal plan in MR
h (and we know cRh

∗ ≤ cRh (π∗mod) and cRh
∗ ≤ cRh (π′)). This means

IE(π∗mod,MR
h , δMR

h
) < IE(π′,MR

h , δMR
h

). This contradicts the initial assertion, prov-

ing that there is a one to one correspondence between optimal plans for Pmod and

Π∗IE(·,MR
h ,δMR

h
)
.

5.5 Evaluation

We will now demonstrate how the explicability value and design cost of the optimal

solution evolve when optimizing for a single problem, multiple problems and multiple

problems with a time horizon using the running example. We will also evaluate the

performance of our approach on 3 IPC (International Planning Competition) domains

and discuss the interplay between explicability and plan cost.

5.5.1 Demonstration

We use our running example from Figure 5.1a to demonstrate how the design

problem evolves. We constructed a domain where the robot had 3 actions: pick-up

and put-down to serve the items on a tray and move to navigate between the kitchen

85

and the booths. Some grid cells are blocked due to the tables and the robot cannot

pass through these: cell(0, 1) and cell(1, 1). Therefore, the following passages are

blocked: cell(0, 0)-cell(0, 1), cell(0, 1)-cell(0, 2), cell(0, 1)-cell(1, 1), cell(1, 0)-cell(1,

1), cell(1, 1)-cell(1, 2), cell(1, 1)-cell(2, 1). We considered 6 designs, each consisting of

putting a barrier at one of the 6 passages to indicate the inaccessibility to the human

(i.e. the design space has 26 possibilities).

For the following parameters: α = 1, β = 30, κ = 0.25 and γ = 0.9, we ran our

algorithm for three settings: (a) single explicable problem for T = 1, (b) multiple

explicable problems for T = 1, and (c) multiple explicable problems for T = 10.

As mentioned before, (a) involved serving a new customer at a booth (say G1) only

once, (b) involved serving a new customer only once at either of the booths with

equal probability and (c) involved serving each customer at most 10 times at either of

the booths with equal probability. We found that for settings (a) and (b) no design

was chosen. This is because these settings are over a single time step and the cost

of installing design modifications in the environment is higher than the amount of

inexplicability caused by the robot (β > α). On the other hand, for setting (c), the

algorithm generated the design in Figure 5.1b, which makes the robot’s roundabout

path completely explicable to the customers.

5.5.2 Domain setup

We used three IPC domains for evaluation: Blocksworld, IPC-Grid and Driver-

log. For each domain, we created two versions: the robot’s domain and the human’s

domain. We generated 20 design problems for each domain, and each had 3 planning

problems with uniform probability distribution. All the experiments were run on

an Ubuntu workstation with 64G RAM. We used Fast Downward with A* search

and the lmcut heuristic [40] to solve the compiled planning problems. The variable

86

parameters in our implementation are α, β, κ (coefficients associated with the terms

in the objective function), γ (discount factor) and T (time horizon). For all the

domains we used actions and design modifications of unit cost.

For Blocksworld, the robot’s domain was the original IPC domain, and the hu-

man’s domain assumed that the robot can pick up multiple blocks simultaneously.

The set of allowed designs ensured that stacking for every block was preceded by

picking the block up from the table. This would reduce the inexplicability for the

human as the only block that would be stacked is the one that was picked up from

the table before stacking. In practice, this may involve notifying the human about

the new rule. For IPC-Grid, the robot’s domain was the original IPC domain and

the human’s domain assumed that diagonal movements were possible in the grid. We

allowed design modifications that pruned diagonal actions. In actuality, this may in-

volve notifying the human that diagonal actions are not possible at certain locations.

For Driverlog, the robot’s domain was the original IPC domain and the human’s

domain assumed that packages can be loaded and unloaded from the truck regardless

of the location of the driver. We allowed modifications that required load and unload

actions to occur only after a disembark action. This may again involve notifying the

human about the new rules concerning load/unload actions.

5.5.3 Performance on IPC domains

For this objective, we set α, β and κ to 1.0, 0.25, 0.25 respectively for all domains

i.e., we gave more weight to minimizing inexplicability. We set T to 1 and 10 and

γ to 0.9. We allowed the search to run for 30 minutes per problem. If it ended

within 30 minutes we output the optimal design modification, else we output the

design modification which gave the best optimization value (or total cost) among the

explored nodes. Note that in the IPC grid, we restricted the set of applicable designs

87

Domain Horizon Metrics Design
Inexplicability Plan Cost Total Cost

Time Taken (secs)
Size w/o Design w Design % Difference w/o Design w Design % Difference w/o Design w Design % Difference

Blocksworld

1
Avg 1.25 14.11 2.18 -84.54 8.69 9.52 9.58 16.28 4.87 -70.07

1800
SD 0.79 16.86 0.92 - 1.39 1.85 - 17.11 1.38 -

10
Avg 1.25 91.90 14.20 -84.54 8.69 9.52 9.57 113.63 38.33 -66.27

SD 0.78 109.80 5.98 - 1.39 1.85 - 112.36 9.59 -

IPC-Grid

1
Avg 0.75 3571.84 1455.39 -59.25 24.84 24.84 0 23326.29 1461.79 -93.73

1800
SD 0.44 12043.62 4428.98 - 3.01 3.01 - 78444.61 4429.19 -

10
Avg 0.75 23264.19 9479.32 -59.25 24.84 24.84 0 23326.29 9541.61 -59.09

SD 0.44 78442.72 28846.93 - 3.01 3.01 - 78444.61 28848.86 -

Driverlog

1
Avg 0.8 2.26 1.6 - 29.14 8.46 9.17 8.46 4.37 4.09 - 6.39

219.42
SD 0.77 0.54 0.57 - 0.59 0.89 - 0.61 0.54 -

10
Avg 1.2 14.70 8.93 -39.28 8.45 9.71 14.76 35.85 33.50 - 6.57

SD 0.69 3.54 2.78 - 0.59 0.97 - 4.30 3.94 -

Table 5.1: We Report the Impact of Design Modifications on Inexplicability Score,

Plan Cost and Total Cost. We Also Report the Average and Standard Deviation

Values for the Three Optimization Terms in the Objective Function along with the

Run Time.

at each node to the ones that affect the current expected human plan. To show the

impact of design modifications, we computted the inexplicability score, the plan cost,

and the total cost for the most explicable plan in the initial model without any design

modification. To compare the impact of longitudinality, we compute these for single

step horizon and multi-step horizon.

In Table 5.1, we report the results for the 3 domains. By comparing the inexplica-

bility score with and without design, we see that the inexplicability always decreases

as expected. For Blocksworld and IPC-Grid, the percentage decrease is the same for

one-step and multi-step horizon; this is because the same set of designs were the best

solutions found for both settings (under the time-limit) and the values got multiplied

88

Figure 5.3: The Plot Shows the Impact of Inexplicability Score Coefficient (α) on

Design Size in the Solutions over Different Time Horizons for a Driverlog Problem.

with the value of T . On the other hand, for Driverlog, there were different designs

selected, as is evident from the values. By comparing the plan cost with and with-

out design, we can see that for Blocksworld and Driverlog, there is a substantial

increase in the plan cost. This is because for these two domains, the designs ensured

an action could be performed only after execution of another action. In this case,

the robot bears additional cost for improving the explicability. On the other hand

for IPC-Grid, the action pruning strategy removed actions from the human’s mental

model and therefore there is no increase in the plan cost. Similarly, by comparing the

total cost with and without design, we can see that there is a significant decrease in

the total cost after applying design modifications. This is because the optimization

chooses design modifications that minimize the overall cost associated with the initial

model.

89

5.5.4 Interplay Between Inexplicability Score and Plan Cost

To study the interplay between inexplicability score and plan cost, we experi-

mented with a DPExp,D,T problem in the Driverlog domain. We used discount

factor γ = 0.9 and design cost coefficient β = 0.25. We tested the impact of different

inexplicability score coefficient values (α: 0.5, 0.66, 0.75, 1) on the number of design

choices in an optimal solution given different time horizons T : 1, 10, 20, 30, 40, 50.

At most two design choices were allowed in the solution.

In Figure 5.3, we report the impact on the size of design modifications. Recall

that, the discount factor γ denotes the probability that the human will not ignore

the inexplicability of the behavior. Therefore, when γ is set to 0.9, the optimization

prioritizes reduction in inexplicability score. Given that the design cost coefficient

β = 0.25 is low, even with single time step horizon T = 1, designs are found that

improve the explicability of the robot’s behavior as shown in Figure 5.3. However,

the designs in the Driverlog domain lead to an increase in the cost of the robot plan

(due to additional disembark actions). Given a long time horizon (T = 50), the cost

overhead borne by the robot for being explicable becomes greater than the impact of

the inexplicability score on the human. Hence no designs are found at T = 50 for any

of the α values. If explicability of the robot’s behavior is desired for longer horizons,

this can be achieved by setting α to a high value. This shows the inherent interplay

between the inexplicability of the behavior and the additional plan cost borne by the

robot to reduce inexplicability.

Environment Design for Legibility and Predictability

This section details a general formulation for the environment redesign problem

to facilitate legible and predictable robot behaviors. We will first discuss the notion

90

of environment design problem for communicative behaviors in general. And then

we will outline the legibility and predictability scores that can be plugged into the

general problem of environment design for communicative behaviors. We discussed

the notion of offline goal and plan legibility in Chapter 4. However, in this section, our

discussion on legibility will focus on online settings – i.e. legibility score with respect

to partially executed plan prefixes of the robot. Further, this legibility score will be

more general i.e. defined with respect to candidate robot models (as against only

goals or only plans). In this section, we will also discuss the notion of predictability

with respect to plan prefixes. Predictable robot behavior allows the human observer

to easily anticipate robot’s possible plan completion to an executed plan prefix. We

briefly touched upon this notion in Section 4.4.1, while discussing the connection

between plan legibility and predictability. As we have seen in this chapter, one of

the biggest advantages of environment design is that the process of generation of a

desired behavior is offloaded from the robot onto the design process, and therefore is

a useful tool for facilitating desirable robot behaviors in structured settings. We will

now see the problem of environment design for legibility and predictability with an

illustrative example,.

Illustrative Example Consider an office setting where an office assistant robot,

responsible for delivering items such as coffee or mail to the employees, is about to

be deployed (Figure 5.4a). The robot (actor) will be supervised by office security

guards (observer) who have worked with previous generation office assistant robots

and have some expectations regarding their functions. In particular, they expect the

robot to carry one item at a time (i.e. either mail or coffee) and each robot generally

has a strong preference on the order in which it picks up these items (though the

order changes from robot to robot). Unknown to the guards, the new model adds

91

(a) (b) (c)

Figure 5.4: The Office Assistant Domain: (a) the Original Domain; (b) to Induce

Legible Behavior, We Can Add Dividing Walls to Constrain the Agent and Help the

Observer Reduce Uncertainty in Their Mental Model; And (c) to Induce Predictable

Behavior We Can Reduce Uncertainty about the Item Being Picked up by Including

a Tray That Allows the Agent to Pick Up Both of the Objects.

more flexibility to the robot by (1) removing the need for the robots to have fixed

preference on the order to pick up items and (2) installs a coffee cup holder that

allows the robot to carry both mail and coffee at the same time. Now if we allow

the new robot to simply act optimally in the original setting, it might unnecessarily

confuse the observers.

If the robot was built to generate communicative behavior, it will change its

behavior (and possibly settle for suboptimal decisions in its own model) in order to

address these model differences. However, the same effect can be achieved if the

designers who are deploying the robot also designed the environment to ensure that

decisions of the new robot remain interpretable to the occupants of the office.

If the designers wish to prioritize legibility, the aim is to help the user differentiate

between the models as early as possible, one way to do it would be to disable the coffee

92

holder and then introduce obstacles as shown in Figure 5.4b. As for predictability, the

objective is to allow the user to be able to predict the entire plan as early as possible.

One possible design for this scenario is to disable the coffee holder and provide the

robot with a tray that allows the robot to carry both of the items at the same time.

The observer can see the tray and realize that the robot can place both items in the

tray. Further, we need to add additional obstacles to restrict the space of possible

plans that can be done by the robot in a cost-optimal manner (Figure 5.4c).

Problem Setting

In this setting, the robot operates in an environment while being observed by the

human. A communicative planning problem is a tuple, PComm = 〈MR,MR
h , Comm〉,

where,MR is the robot’s model of the task, MR
h is the observer’s mental model of the

robot, represented by a set of candidate task models that the observer believes that

the robot has, and Comm : ΠMR → R is the communicative behavior score that is

used to evaluate robot’s plans (where ΠMR is the space of robot plans). Interestingly,

we do not require thatMR ∈MR
h – i.e. the models in MR

h can be different fromMR

in all possible aspects (e.g. state space, action space, initial state and goals). The

solution to PComm is a plan or policy that not only solvesMR but also satisfies some

desired properties of communicative behaviors (measured through the score). The

score could reflect properties like legibility or predictability of the plan.

Legibility With legibility, the objective of the robot is to inform the observer about

its model – i.e. reduce the size of MR
h . A robot’s behavior is considered to be perfectly

legible if it can be derived from only one model in MR
h . In an online setting, the longer

it takes for a plan prefix to achieve this, the worse is the plan’s legibility. This notion

thus helps the observer narrow down their belief over the possible robot models as

93

quickly as possible.

Predictability The objective of the robot with predictability is to generate the

most disambiguating behavior – i.e. given the robot’s plan prefix, the observer should

be able to predict its completion. These predictions would be in terms of cost-optimal

completions of a given prefix in the possible problems in the mental model. This

means that if there exists the same unique completion in all of the models then the plan

is predictable even though not legible. The shorter the length of the disambiguating

plan prefix, the better the predictability of the plan. An empty prefix would thus

correspond to the most predictable plan.

Environment Design for Communicative Behaviors

We now present a general formulation for the design problem for communicative

behaviors. Given an environment design, we assume that the robot is a rational

agent and therefore is incentivized to generate cost-optimal plans. Let the set of cost

optimal plans of the robot be Π∗MR . A cost-optimal plan solution to MR can exist

anywhere on the spectrum of legibility and predictability from high to low. Therefore,

we need a measure to quantify the communicative score for the robot’s set of cost-

optimal plans. To that end, we introduce the worst-case communicative score wcc as

follows:

Definition 21. The worst-case communicative score wcc(·), for PComm is defined

as

wcc(PComm) = min
π∈Π∗

MR

Comm(π) (5.9)

Comm(·) is instantiated for each type of communicative behavior separately and

is discussed in detail at the end of this section. The higher the score, the better

94

the communicative ability of the behavior (in terms of either of two properties).

Therefore, the worst-case communicative score is the minimum communicative score

of a cost-optimal plan of the robot.

We can now define the design problem for communicative behavior. When a

modification is applied to the environment, both the robot’s model and the observer’s

mental model are modified, thereby changing the worst-case communicative score of

the robot’s cost-optimal plans for the given model. Let P denote the set of valid

configurations in the real environment. Although MR ∈ P , problems in MR
h might

not necessarily be in P if the observer has incorrect or infeasible notions about the

robot’s model. Therefore, we represent the set of configurations that the observer

thinks are possible as P̃ , and MR
h ⊆ P̃ .

Definition 22. The design problem for communicative behavior, DP-Comm,

is a tuple 〈P0
Comm,∆,Λ

R,ΛR
h 〉 where,

• P0
Comm = 〈MR0

,MR
h

0
, Comm〉 where MR0 ∈ P and MR

h
0 ⊆ P̃ are the initial

models.

• ∆ is the set of modifications that can be applied to the environment. ξ is a

sequence of modifications.

• ΛR : ∆ × P → P and ΛR
h : ∆ × P̃ → P̃ are the model transition function that

specify the resulting model after applying a modification to the existing models.

The set of possible modifications includes modifying the set of states, action pre-

conditions, action effects, action costs, initial state and goal. Each modification ξ ∈ ∆

is associated with a cost, such that, C(ξ) =
∑

ξi∈ξ C(ξ). After applying ξ to both

MR0 and MR
h

0, the resulting robot decision making problem model and observer

mental model are represented asMR|ξ| and MR
h
|ξ| respectively.

95

Let P |ξ|Comm be the modified communicative planning problem after applying the

modification ξ to PComm. Our objective here is to solve DP-Comm such that the

worst-case communicative score of PComm is maximized. Apart from that, the design

cost of ξ has to be minimized, as well as the cost of a plan πR that solvesMR|ξ|.

Definition 23. A solution to DP-Comm, is a sequence of modifications ξ with

min(−wcc(P |ξ|Comm), C(ξ), cost(πR)) (5.10)

This completes the general framework of design for communicative behaviors. In

the following, we will look at specific instances of design for the different notions of

communicative behaviors.

Design for Legibility

In order to be legible, the robot’s plan has to reveal its task to the observer as early

on as possible. Therefore, the legibility of a plan is inversely proportional to the

length of its shortest prefix that has unique cost optimal completion for more than

one problem in the observer’s mental model.

Definition 24. The legibility score Leg(·) of a robot’s plan, πR, that solvesMR is

defined as follows:

Leg(πR) = min
π̃R∈Π̃MR

e−|π̃
R| (5.11)

such that ∃(MR
h
i
,MR

h
j
) ∈ MR

h , i 6= j with unique cost optimal completion of π̃R in

each model, and Π̃MR is the set of all prefixes of πR. Plugging this scoring function

in Equation 21 allows us to instantiate the design problem for legibility.

Goal Recognition Design The work on goal recognition design (GRD) [47] is a

special case of the design problem for legibility. The GRD problem involves a robot

96

and an observer where the observer’s mental model consists of planning models that

have the exact same state space, actions and initial state as the robot’s planning

model. However, each planning model in the observer’s mental model has a different

goal. The robot’s true goal is one of them, and the objective of GRD problem is

to redesign the environment, such that, the true goal of the robot is revealed to the

observer as early as possible. The communicative planning problem defined here is a

general one, where the observer’s mental model can be different in all possible ways

from the robot’s actual planning model.

Design for Predictability

In order to be predictable, the plan has to be the most-disambiguating plan among

the set of plans the observer is considering – i.e. the observer should be able to

predict the rest of the plan after seeing the prefix. Therefore, predictability of a plan

is inversely proportional to the length of its shortest prefix which ensures only one

optimal completion solving only a single problem in the observer’s mental model. We

can quantify the predictability score as follows:

Definition 25. The predictability score Pred(·) of a robot’s plan πR that solves

MR is defined as follows:

Pred(πR) = min
π̃R∈Π̃MR

e−|π̃
R| (5.12)

such that ∃!π ∃MR
h
i ∈MR

h where π is an optimal completion of π̃R, and Π̃MR is the

set of all prefixes of a plan πR. Plugging this scoring function in Equation 21 allows

us to instantiate the design problem for predictability.

Connection to Plan Recognition Design The predictability problem corre-

sponds to the plan recognition design (PRD) problem [72]. However, our proposed

97

framework in terms of possible observer models subsumes the plan library based ap-

proaches in being able to support a generative model of observer expectations.

5.6 Concluding Remarks

In this work, we bridge the gap between past works on environment design and

those on generation of explicable behavior. We present a novel framework of environ-

ment design for explicability. As we saw, the notion of environment design is more

suitable option to facilitate explicability, when there is repeated execution of tasks

or when there are multiple tasks in the environment. This allows us to explore a

novel trade-off that arises between the one-time cost of design and the repeated cost

overhead incurred by the robot for generating explicable behavior. In general, the

design modifications can also be software changes that only affect the robot’s capabil-

ities. In prior works on explicable plan generation, the underlying setting considered

a one-time interaction between a human and a robot. In this work, we relaxed this

assumption and explored the notion of inexplicability given repeated interactions.

Further, we also saw the general problem of environment design for communicative

behaviors like legibility and predictability. And that the problems of goal recognition

design and plan recognition design fall out as special cases of design for legibility and

design for predictability frameworks respectively.

98

Chapter 6

PLANNING FOR OBFUSCATORY BEHAVIOR

In this chapter, we will focus the discussion on obfuscatory strategies that a robot

can employ in an adversarial environment. So far, we have seen how a robot can

synthesize interpretable behaviors while it is interacting with a cooperative human

observer. However, in the real world not all of the robot’s interactions may be of purely

cooperative nature. The robot may come across entities of adversarial nature while it

is completing its tasks in the environment. In such cases, the robot may have certain

secondary objectives like privacy preservation, minimization of information leakage,

etc. in addition to its primary objective of achieving the task. Further, in adversarial

settings, it is not only essential for the robot to minimize information leakage but

also to ensure that this process of minimizing information leakage is secure. Since, an

adversarial observer may use diagnosis to infer sensitive information from the gleaned

observations and then use that information to interfere with the robot’s objectives.

To prevent leakage of sensitive information, the robot should be capable of gener-

ating behaviors that can obfuscate the sensitive information about its goals or plans.

A robot can hide its true goal from an adversarial observer by making several goals

seem plausible at the same time. Thus the true objective stays obfuscated from the

observer. Additionally, if the obfuscation is not secure, the adversary can try to glean

sensitive information from multiple different executions of the robot, therefore the

obfuscation has to also be secure. The robot can choose to obfuscate its actions as

well apart from its goals. We show that these obfuscatory behaviors can be captured

using the same controlled observability planning framework (COPP) introduced in

Chapter 4. Additionally, we will also look at another approach for goal obfuscation

99

which balances the obfuscation with amount of resources available. Here the robot’s

objective is to obfuscate the true goal for as long as the resource budget allows.

6.1 Related Work

There are several prior works which discuss the problem of privacy preservation in

distributed multi-agent systems [8; 65; 7]. A recent work on privacy for multi-agents

by Maliah et al. [68] is complementary to our approach, as they consider problems

where the model needs to be protected from the team members but goals and the

behavior are coordinated. In contrast, we consider problems where the models are

public but goals and behavior need to be protected.

The problem of goal obfuscation is directly related to plan and goal recognition

literature [78; 79; 31; 88; 47; 49; 77]. Traditional plan recognition systems have focused

on techniques where actions being executed can be observed directly. Although since

we model these obfuscatory behaviors in the COPP framework, the observational

equivalence resulting from the many-to-one formulation of the observation function

O introduces, in effect, noisy action-state observations. This, in turn, complicates

plan recognition. More crucially, the robot uses the observational equivalence to

actively hinder the ease of plan recognition.

A few recent works have explored the idea of obfuscation in adversarial settings

from the goal recognition aspect [50; 70]. Keren et al. [50] propose a solution that

obfuscates a goal by choosing one of the candidate goals that have the maximum non-

distinct observation sequence in common with the true goal. Our approach generalizes

this notion with respect to k number of candidate goals, and additionally our approach

also guarantees secure goal obfuscation for these k candidate goals, such that, even if

the adversary tries to run the algorithm with different inputs, there is no additional

information leakage about the robot’s true goal.

100

The concept of deception has also been explored in the context of adversarial

environments. While the concept of obfuscation deals with the notion of confusing the

adversary with several decoy candidates, the concept of deception [70] involves making

one of the decoy candidates more likely than the robot’s true objective/activities.

Thus, with deceptive strategies, in order to deceive an adversarial observer, it is

crucial to have access to their goal or plan recognition models. By incorporating the

predictions of the goal or plan recognition model, the robot can synthesize behavior

that deceives the adversarial observer into believing that the decoy candidate is the

true candidate. In the prior literature, synthesis of deceptive behaviors with respect to

robot’s goals has been studied in path planning scenarios where the adversary has full

observability of robot’s activities [70]. In order to successfully deceive an adversarial

observer, the robot’s plan has to end when a decoy goal is achieved. However, in

reality, the robot has a primary objective of achieving its true goal. Therefore, in

cases where the observer has full observability of the robot’s activities, fully deceptive

behavior may be hard to synthesize.

6.2 Goal Obfuscation

The problem of goal obfuscation arises when the robot wants to obfuscate its true

goal from the adversary. This is possible in settings where the adversarial entity is

unaware of the robot’s true goal but is aware of the possible candidate goals that the

robot may try to achieve in the given domain. This problem setting is also part of the

controlled observability planning problem, introduced in Chapter 4. Therefore, this

is also an offline setting, where the adversary only gets the observation sequence once

the robot has executed its actions. In fact, the goal obfuscation setting is similar

to the setting seen in the goal legibility problem. However, here because of the

existence of an adversarial observer, instead of being legible with respect to its true

101

Figure 6.1: Illustration of Impact of Goal Obfuscation and Secure Goal Obfuscation

on Human’s Mental Model.

goal, the robot obfuscates its true goal. In order to obfuscate effectively, the robot

needs to have access to the adversarial observer’s sensor model. Such a sensor model

defines the type of observations the adversary may get. The adversary may use these

observations resulting from the robot’s behavior to infer some sensitive information

about the robot’s goals. Depending on the granularity of the observations available

to the adversary, the problem of goal obfuscation becomes easy or complex. That is

with fine-grained observations, goal obfuscation might be harder to achieve or may

even be infeasible in some cases, whereas with coarse-grained observations, it might

be easier for the robot to obfuscate its true goal. Further, the adversary may be

able to use the information gleaned from observations to interfere with or hamper the

robot’s activities. Therefore, in this setting, the robot is tasked with the additional

objective of preventing the adversary from learning sensitive information about its

goal.

Definition 26. A goal obfuscation planning problem, is a controlled observability

planning problem, i.e., a PCO, where, G = {GA ∪ G1 ∪ . . . ∪ Gn−1}, is the set of n

goals where GA is the true goal of the robot, and G1, . . . , Gn−1 are decoy goals.

102

6.2.1 Computing Goal Obfuscatory Plans

A solution to a goal obfuscation planning problem is a k-ambiguous plan. Recall

that, since the observer receives observations of the robot’s behavior, each plan is

associated with a corresponding observations sequence. Therefore, the objective of a

k-ambiguous plan is to make the observation sequence consistent with at least k goals,

out of which k − 1 are decoy goals, such that, k ≤ n. This is done by taking actions

towards robot’s true goal, such that, the corresponding observation sequence exploits

the observer’s belief space in order to be consistent with multiple goals. That is, a k-

ambiguous plan produces a final belief state consistent with its observation sequence

where at least k goals are possible. The k − 1 decoy goals can be chosen specifically

to maximize the obfuscation. Figure 6.1 illustrates goal obfuscation for k = 2 in the

middle image. Here the true goal of the robot to pickup the medkit is marked in the

leftmost image. The adversarial observer has partial observability of the direction

in which the robot moves (say, the observer receives coarse observations from the

GPS sensor, which does not reveal the exact direction of the movement). In order

to obfuscate its true goal from the adversarial observer, the robot performs a 4-step

k-ambiguous plan (for k=2), as shown in the middle image.

To define a k-ambiguous plan, we use the notation for belief state, introduced in

Chapter 4, under Section 4.2.

Definition 27. A plan, πk, is a k-ambiguous plan, if Γ(I, πk) |= GA and the final

belief state, bn ∈ BS(πk, I), satisfies the following, |G ∈ G : ∃s ∈ bn, s |= G| > k,

where 1 6 k 6 n.

Definition 28. An observation sequence Ok = 〈o1, . . . , on〉 is k-ambiguous obser-

vation sequence if it is an observation sequence emitted by a k-ambiguous plan.

The underlying algorithm for generating a k-ambiguous plan is the same as Algo-

103

rithm 3 introduced in Chapter 4. However, the goal test and heuristic function are

customized to ensure that the goal obfuscation constraints are met.

Goal test

The goal test ensures that the solution plan does not end unless all k goals occur in

the observer’s belief state. Specifically, it validates whether the true goal has been

achieved in the robot’s true state and also whether the k−1 goals have been achieved

in the belief state. If a plan that can achieve the true goal with the given k goals

doesn’t exist, we restart the search with next combination of k goals (inclusive of true

goal) among the total n candidate goals. In the worst case, the value of k can be

reduced until a solution is found.

Heuristic function

Here the heuristic strategy is to generate a plan where the observer’s final belief state

satisfies k goals, making it a k-ambiguous plan. We use two heuristic functions to

estimate a node’s cost: h(s) = hGA
(s) + hGk−1

(b), where the first part computes the

heuristic cost to the true goal from the robot’s actual state, and the second part

computes the heuristic cost to k − 1 goals from the belief induced by the emitted

observation. This is computed by finding the max of heuristic cost to each of the

k − 1 goals. The heuristic value of a state is computed as the total of these two

values. Thus the heuristic helps to guide the search towards at least k goals in the

observer’s belief.

6.3 Secure Goal Obfuscation

The above approach to synthesizing goal obfuscating behavior is not secure. In

the sense that it reveals information when the following assumptions are not satisfied

104

[64; 97]: (1) adversary knows the actor’s algorithm: this means that the adversary

has access to the algorithm and knows how the algorithm works. For example, the

adversary knows what states are generated by the algorithm. (2) Independence of

inputs: this means that the adversary can run the algorithm with different inputs. For

example, the adversary can set different goals as true goal to check the variability of

the output. Figure 6.1, rightmost subfigure illustrates how an adversary can rerun the

algorithm with different input and glean information about the true goal. By setting

the true goal to some other candidate goal, the adversary can run the algorithm and

find out the robot’s original goal which gave the observation sequence.

6.3.1 Computing Secure Goal Obfuscatory Plans

In order to synthesize a secure goal obfuscating behavior, we can introduce some

randomization in our solution synthesis process, that would prevent leakage of addi-

tional information. To that end, we randomly choose a set of k goals (inclusive of

true goal) from n candidate goals. Then randomly pick a goal from this set as a “true

goal” and run the algorithm. Let’s call this goal as the decoy true goal. We have

to maintain the plans to each of the k goals that are consistent with the observation

sequence. Then by performing a post processing step, we can retrieve the plan that

reaches the robot’s true goal and is consistent with the observation sequence produced

by the plan to the decoy true goal. This process ensures that even if the adversary

runs the algorithm again with either the same or different input (different goal as

true goal, or different combination of k goals), the identity of the true goal remains

k-ambiguous.

In this setting, a perfectly rational adversary would be one that has unbounded

computational resources, and can use them to make perfect inferences. In other words,

that is the worst case scenario for our algorithm. The following proposition shows

105

Figure 6.2: Illustration of the Impact of Plan Obfuscation on Human’s Mental Model.

that our algorithm provides k-ambiguous guarantee even in the worst case, such that

a perfectly rational adversary remains uncertain about the true goal.

Proposition 4. Let H be a perfectly rational adversary. Given a goal obfuscation

planning problem for an robot R. Plans computed using Algorithm 3 with k-ambiguous

goal test and heuristic function are such that, H will be able to infer the true goal

with probability 6 1/k.

Let’s say goal Gi from the set Gk is chosen randomly to be the decoy true goal.

The observation sequence Oi is obtained by running the algorithm with GA = Gi.

The adversary can run the algorithm with each goal from Gk to search for Gi. But

Gi can only be the robot’s true goal with probability 1/k. Therefore the adversary

can detect the true goal with probability 6 1/k.

Note that the goals can be specified using sub-formulae. This makes the input

specification much smaller depending on how many states are in the domain that

are consistent with the sub-formulae. In the least constrained domain, that may be

exponential in the number of propositions not used.

106

6.4 Plan Obfuscation

In this problem setting, the adversarial observer is aware of the robot’s goal since

there is a single candidate goal. The robot, however, obfuscates its activities towards

its goal thereby hiding sensitive information about its activities. We refer to this

behavior as plan obfuscatory behavior. The robot can achieve a plan obfuscatory

behavior by computing a plan whose observation sequence conforms to a set of plans

that are diverse in terms of their actions, thereby making it hard for the adversarial

observer to guess the actions executed by the robot. For instance, in Figure 6.2, the

goal of the robot is to pick up a medkit and treat the victim on the disaster site. It

has two choices of medkits to pick from. If it chooses the medkit as shown in the

rightmost sub-figure, it can maximize the diversity with respect to its actions. Here,

the multiple different paths to the medkit produce the same observation sequence

(due to the underlying coarse GPS sensor model, which doesn’t reveal the direction

of the robot’s movement), thus hiding the robot’s true actions from the adversarial

observer.

Definition 29. A plan obfuscation planning problem is a tuple, PPO = 〈D,GPO,

Ω,O〉, where, |GPO| = 1.

6.4.1 Computing Plan Obfuscating Plans

The solution to a plan obfuscation problem is an `-diverse plan. An `-diverse plan

is a plan whose observation sequence is consistent with at least ` diverse plans to the

goal, such that, the diverse plans are at least d distance away from each other. In order

to compute an `-diverse plan, we need to keep track of the plans that are consistent

with the observation sequence and reach the goal. To compute the diversity between

all the pairs of plans consistent with the observation sequence, a plan distance measure

107

[93; 74] like action distance, causal link distance, state sequence distance (introduced

in Chapter 3) can be used. Our approach can use any valid plan distance. We now

define an `-diverse plan using the notion of d-distant pairs of plans, where d is the

distance between the two plans, which was introduced in Chapter 4. We will also use

the notion of belief plan set (BPS) introduced in Chapter 4, which is a set of plans

that are consistent with the belief sequence of a given plan.

Definition 30. A BPS induced by plan p starting at s0 is minimally d-distant,

dmin(BPS(p, s0)), if d = min
p1,p2∈BPS(p,s0)

δ(p1, p2).

Definition 31. A plan, πl, is an `-diverse plan, if for a given value of d and

distance function δ, dmin(BPS(πl, I)) ≥ d, |BPS(πl, I)| ≥ `, where ` ≥ 2 and every

plan in BPS(πl, I) achieves the goal in G.

In order to generate a solution plan to the plan obfuscation problem, we use

Algorithm 3 as before. Again, the goal test and heuristic function are customized to

ensure that there are at least ` diverse plans to the true goal that are consistent with

the observation sequence and the minimum distance between these plans is at least

d.

Goal test

To ensure the plans in BPS, induced by an `-diverse plan, can achieve the goal

in G, we check whether at least ` plans are reaching the goal or not and whether

the minimum distance between plans in BPS is at least d. Also in order to ensure

termination of the algorithm, there is a cost-bound given as input to the algorithm.

108

Heuristic function

Apart from minimizing the heuristic cost to the goal, the customized heuristic given

below also maximizes the d of dmin(BPS(p, s0)) induced by plan p starting at s0. This

increases the minimum distance between the plan pairs. This distance is computed

using a plan distance measure.

h(s) = hGA
(s)− dmin(BPS(p, s0)) (6.1)

6.5 Empirical Evaluation of COPP Problem Variants

We now present an empirical evaluation of two COPP problem variants discussed

in this chapter. Through empirical evaluation, we intend to investigate the following

objectives (1) comparison between run time and plan costs across the two problem

variants versus the optimal solution to the true goal, (2) cost overhead incurred by

the decoy true goal randomization step in goal obfuscation problem, (3) impact of

∆ in Algorithm 3 on goal obfuscation. The domain and experimental setup for these

experiments is same as that in Section 4.5.

6.5.1 Results

The evaluation results are presented in Tables 6.1 and 6.2 and Figure 6.3. We

modified the STRIPS planner Pyperplan [1] to implement our algorithms. We used

the hsa [53] heuristic of Pyperplan because it gave the best results in terms of com-

putation time. We ran the experiments with k = 3, ` = 3, dmin = 0.25 for all the

domains. We used action distance measure to compute the distance between plans.

We ran our experiments on 12 core Intel Xeon CPU with an E5-2643 v3@3.40GHz

processor with a 64G RAM with 20 minutes time-out. The following number of

problems reached time-out before a solution could be found for goal legibility and ob-

fuscation variants together: 8/50 in the Blocksworld, 11/50 in Logistics and 6/50

109

Domain Metrics k-amb secure `-div opt

Blocksworld
Time 196.9 140.88 0.99

Length 12.33 10.84 9.6

Logistics
Time 206.13 100.04 8.31

Length 28.63 25.92 23.74

Driverlog
Time 145.03 111.99 1.54

Length 14.33 13.59 11.16

Table 6.1: Empirical Evaluation for Goal Obfuscation and Plan Obfuscation Solved

Using the Optimization Presented in Algorithm 3 Versus the Optimal Plan Solution

(Opt Column) to the True Goal. We Report the Average Time (in Seconds) and the

Average Plan Length.

in Driverlog. These problems were excluded from the results to ensure consistency

across problems.

The Table 6.1 presents a comparison between different variants of our framework.

For k-amb secure, we randomize the decoy true goal and use BPS to retrieve the plan

to the true goal. The process of maintaining BPS for every node is expensive and

leads to higher run time, as can be seen in the Table. Another reason for higher run

time is that the planner is working with multiple goals, as k = 3 in our experiments.

Our approach is secure against replay attacks (attacks where the adversary tries

running algorithm with different inputs). For `-div, the run time cost comes from

maintaining BPS for each node. We also compare the time taken to compute an

optimal plan to the true goal represented by the opt column, which is comparatively

110

Figure 6.3: Empirical Evaluation of ∆ in Algorithm 3 for Goal Obfuscation and Goal

Legibility Variants. We Report the Number of Problem Instances Solved for Different

Values of ∆.

Domain k-amb w/o k-amb w/ k-amb secure

Blocksworld 122.7 140.62 196.9

Logistics 159.28 181.74 206.13

Driverlog 112.93 123.02 145.03

Table 6.2: Empirical Evaluation to Report the Average Time (in Seconds) for Different

Versions of k-ambiguous Algorithms. k-amb w/ and w/o Do Not Use BPS and

Report Time with and Without the Additional Post-processing Step. k-amb Secure

Uses BPS to Provide Robust Solutions to Replay Attack.

111

faster since the planner does not take into account the information being inferred by

the adversary.

The Table 6.2 shows performance comparison across different techniques of achiev-

ing k-ambiguous solutions. For k-amb w/, we do not maintain BPS for every node,

instead we retrieve the plan to the true goal by filtering the belief space using the

observation sequence. This can sometimes lead to incorrect solutions (because path

consistency is not checked) but it can be computed faster than the solution that main-

tains BPS (k-amb robust). For k-amb w/o, we show the run times without the extra

filtering step to retrieve the plan to the true goal, i.e., the run time for generation of

k-ambiguous observation sequence. From Figure 6.3, we see that for goal obfuscation,

most of the solutions are obtained for ∆ = 1 for all the 3 domains. Thus showing that

the solutions for goal obfuscation can be obtained for smaller value of ∆ parameter

of Algorithm 3.

Secure Non-Biased Goal Obfuscation

In this goal obfuscation framework, the robot has access to a limited resource

budget. The robot’s objective is to securely obfuscate the true goal for as long as

the resource budget allows and in a cost-effective manner. The general problem of

goal obfuscation involves hiding the true goal of the agent from the observer by mak-

ing the observation sequence “consistent" with k candidate goals. In this section,

we introduce a stronger definition of consistency, such that, even when the solution

computation mechanism is run with either of the k goals as a “true goal", we get

the same observation sequence. In the secure goal obfuscation approach involving

randomization, different candidate goals in the set of k goals will give different obser-

vation sequences, but due to the randomization itself and the post-processing step,

the true goal continues to remain obfuscated. Here in contrast, all the k candidate

112

Figure 6.4: A Gridworld Example Illustrating Our Definition of Privacy. With an

Observation Model That Distinguishes Diagonal and Orthogonal Actions, the Ob-

server Sees the Same Sequence of Observations for All the Three Goals Regardless of

the Agent’s True Goal.

goals give the same observation sequence. Thus, the solution observation sequence

makes all the k goals equally likely for as long as possible. Even this goal obfuscation

approach is secure to replay attacks. Further, this approach can compute the cheapest

solution that satisfies the secure obfuscation guarantee. In the following paragraph,

we illustrate the intuition of this approach using the following example.

Consider the gridworld in Figure 6.4. Assume each cell allows movement in all

8 adjacent cells with equal cost. The initial state is at cell (0, 0). The candidate

goals are given by Goal1, Goal2, Goal3 and Goal4, and Goal2 is the robot’s true goal.

With k = 3, we select Goal1, Goal2 and Goal3 because they have greater similarity in

113

terms of landmarks. The observation model emits two types of observation symbols

for each cell: o1 (marked by blue arrow) if the next cell is diagonally adjacent and o2

(marked by red arrow) otherwise. In the Figure 6.4, we can see three plans where each

reaches a candidate goal. Each of these plans produce the same observation sequence

given by {o2, o1, o1, o1, o1}. Each of these plans is a secure goal-obfuscated plan, where

k = 3. The observation sequence is the same regardless of the true goal. A secure

non-biased goal-obfuscated plan can be achieved by finding the cheapest path to a

closest point that is equidistant (in terms of remaining steps) from each of the goals.

In the example, the equidistant state at cell (3, 4), is 2 steps away from each goal.

From this equidistant state, we check if there exists an observation sequence which

is common to the 3 goals and reaches the goals in only 2 steps. From cell (3, 4), the

observation sequence 〈o1, o1〉 satisfies the requirement. The four equidistant states

for the three candidate goals are marked in brown color.

If the observation model allows for full observability, such that, each grounded

action is mapped to a unique observation symbol, then a fully obfuscated plan is not

possible. In such cases, our aim is to obfuscate the true goal for as long as possible

by computing a plan that achieves an equidistant state, such that the cost from the

equidistant state to each of the goals is minimized. We also discuss a method for

choosing k goals among a set of n candidate goals, such that, we can minimize the

solution cost and maximize the overall obfuscation. In the following sections, we

discuss this approach in detail. We also establish upper and lower bounds on the cost

of solutions which ensure secure non-biased goal obfuscation. We present evaluation

of our approaches using three International Planning Competition (IPC) domains,

namely, Blocksworld, Logistics and Zenotravel.

114

Problem Setting

We assume all the actions in the planning problem are of uniform cost and equal to 1.

In other words, the length of the plan is equal to the cost of the plan and an optimal

plan is a shortest length plan for the given planning problem. We adapt the goal

obfuscation problem definition to also include robot’s resource budget as follows:

Definition 32. A resource bounded goal obfuscation is a goal obfuscation plan-

ning problem, PGO = 〈F ,A, I,G,Ω,O,R〉, where, R is the cost budget of the robot.

Properties of Secure Non-biased Goal-Obfuscation A secure non-biased goal-

obfuscated plan is a solution to PGO, that minimizes the bias of the observation

sequence towards the true goal. With respect to a chosen set of k goals, such that,

Gk ⊆ G ∧ GA ∈ Gk, if we can make the observation sequence associated with the

robot’s plan identical for all the k goals, then there is no bias and the true goal is

securely obfuscated. If this is not possible, we minimize the bias by maximizing the

length of identical observations corresponding to plans for each goal in k. The value

of k can be k ≤ n. We will now distill three important properties of a secure non-

biased goal-obfuscated plan: (1) For each goal in Gk, there should exist a plan which

achieves the goal in l number of steps, such that, l is within the resource budget,

(2) The observation sequence associated with k plans that each achieve a goal in

Gk should be the same, (3) The observation sequence should not be biased by any

goal in Gk. The first and second properties are straight-forward. The third property

states that the robot should be able to compute the same observation sequence while

generating a plan solution to any of the k goals. If the above mentioned properties

are followed, the observation sequence associated with the plan does not disclose any

specific information about the true goal. We will refer to a plan that satisfies the

above properties as a secure non-biased goal obfuscatory plan.

115

Computation of Secure Non-Biased Goal-Obfuscatory Plans

In this section, we will discuss our approach for computing a secure solution to a

resource bounded goal obfuscation planning problem. Given the properties a secure

non-biased goal obfuscatory plan, we can say the following:

Definition 33. A secure non-biased goal obfuscatory planner, computes a plan

solution πPGO , and an observation sequence OPGO , to a PGO = 〈F ,A, I,Gk,Ω,O,R〉,

where, Γ(I, πPGO) |= GA, such that, ∀G′ ∈ Gk, if G′ is set as the true goal of the robot,

there exists a plan π′PGO , and an observation sequence O′PGO , where Γ(I, πPGO) |=

G′ ∧O′PGO = OPGO .

Therefore, given a set of k goals, a secure non-biased goal-obfuscatory planner will

generate the same observation sequence when any of the k goals is set as a true goal.

For a given problem, if there does not exist a secure non-biased goal obfuscated plan

(say the observation model doesn’t allow for it), then the planner computes a partial

plan starting from initial state that satisfies the the secure non-biased obfuscation

guarantee for as long as possible. This partial plan guarantees secure obfuscation for

the entirety of its length (although not until the goal). In such cases, we compute

partial secure plans which maximize the coverage of obfuscation from the initial state.

The process of computing a secure non-biased goal-obfuscated plan consists of two

phases: (1) selection of k goals from the set of n candidate goals and (2) computation

of a secure non-biased goal-obfuscated plan and observation sequence. The first phase

selects k candidate goals (inclusive of true goal) that have higher similarity with each

other. And then, the second phase computes a plan whose observation sequence is

consistent with all of the goals present in the chosen set of k goals.

116

Decoy Goal Selection We choose a set of k − 1 candidate goals such that these

goals have higher similarity with the true goal and with each other. We use a landmark

based measure to compute the similarity between the candidate goals. There is a

prior work that has made use of disjunctive landmarks for diverse planning [9]. In

automated planning, for a given problem instance each landmark is a subset of fluent

instantiations that every plan must satisfy in order to solve the problem. The intuition

behind using landmarks is that, the goals with common landmarks will go through

similar states/actions and thereby introduce inherent ambiguity in the plans that

achieve the candidate goals. We can choose Gk as follows:

1. For each goal, G ∈ G, extract the set of landmarks and add each distinct

landmark to a set L.

2. Initialize each landmark L ∈ L with an empty list.

3. For each distinct landmark L, if it belongs to a goal G, add G to L’s list.

4. Order the landmarks in L in decreasing order of the number of associated goals.

5. Select all the landmarks in L that are associated with at least k goals. If no

such landmarks exist then starting from the first select all landmarks until there

are k unique goals.

6. Order the unique goals in the decreasing order of their frequency in the selected

landmarks.

7. If the true goal appears in first half then starting from the first goal (otherwise,

starting from the last goal), divide the goals in groups of unique k goals.

8. Select the group of k goals that includes the true goal.

117

Given the set of k goals, we can obtain a lower bound on the cost of the secure

non-biased goal-obfuscated plan.

Proposition 5. For given Gk, let πGi
be the optimal plan to reach the farthest Gi in

Gk. If πk is a secure non-biased goal obfuscated plan that solves PGO then,

cost(πk) > cost(πGi
)

The above proposition states that the cost of a solution to PGO cannot be cheaper

than the optimal cost to reach the farthest goal in the set of k goals. This proposition

can be useful in a resource sensitive setting, the decoy goals can be chosen such that

the lower bound of the solution cost is smaller than the available cost-bound. Note

that in our setting, all the actions have unit cost.

Secure Non-biased Goal-Obfuscated Plan Once we have chosen the set of k

goals, the next step is to compute a secure non-biased goal-obfuscated plan. In order

to compute it, we do the following: (1) we first compute a set of states that are

equidistant to each of the goals in Gk and (2) then we compute a bounded length

plan from the equidistant state to a goal, such that the observation sequence is same

for plans reaching other goals from the equidistant state. We call it bounded length

belief plan. As stated in the third property listed in Subsection 6.5.1, the observation

sequence should not be biased by any particular goal in Gk. In order to ensure this

property, we use an equidistant state. An equidistant state has equal number of

remaining observations to each of the goals in Gk. This state removes bias of the

search towards any particular goal. That is, regardless of the true goal, the search

visits the same states. Therefore the adversary does not receive any new information

even when the adversary knows how the algorithm works. Another advantage of

computing equidistant state is that it reduces the length of bounded length belief plan,

118

Algorithm 5 Computation of Equidistant States
Input: PGO Output: list of equidistant states

1: open← Priority_Queue(); closed← {}; equidistant← Priority_Queue() . Open, closed and equidistant lists

2: h_diff, h_max← Heuristic_Computation(Gk); open.push(I, h_max)

3: if h_diff = 0 then

4: equidistant.push(I, h_max)

5: end if

6: while open 6= ∅ do

7: s← open.pop()

8: closed← closed ∪ s

9: for a, s′ ∈ successors(s) do

10: g(s′)← g(s) + cost(a)

11: h_diff, h_max← Heuristic_Computation(Gk)

12: if s′ /∈ open and s′ /∈ closed then

13: open.push(s′, g(s′) + h_max)

14: if h_diff = 0 then

15: equidistant.push(I, g(s′) + h_max)

16: end if

17: else

18: g(s′) < gprev(s′)

19: if s′ /∈ open then

20: closed← closed \ s′

21: open.push(s′, g(s′) + h_max))

22: if h_diff = 0 then

23: equidistant.push(I, g(s′) + h_max)

24: end if

25: else

26: update priority to g(s′) + h_max

27: end if

28: end if

29: end for

30: end while

31: return equidistant

32: procedure Heuristic_Computation(Gk)

33: for G ∈ Gk do

34: hGk ← hGk ∪ hG

35: end for

36: h_diff ← max(hGk)−min(hGk); return (h_diff,max(hGk))

119

as the belief space search can be computationally expensive to the robot. Formally,

an equidistant state and a bounded length belief plan are defined as follows:

Definition 34. An equidistant state, e, is a state in the state space of a PGO from

which there are d number of steps/observations remaining to each of the k goals.

Each of the k goals can be achieved in equal number of steps from an equidistant

state. When the observation model allows partial observability, the observer operates

in the belief space. For every observation emitted, the observer’s belief space is

updated to reflect all the possible states consistent with the observation sequence.

For example, in Figure 6.4, the observation o1, is consistent with the robot being

in any of the 4 diagonally adjacent cells. On the other hand, when the observation

model allows full observability, the belief space only consists of robot’s true state.

Note that, as mentioned before, in case of full observability only partial plan, that is

plan up to the closest (to the goals) equidistant state is secure. In the case of partial

observability, we compute bounded length belief plan.

Definition 35. A bounded length belief plan, πGA
, is a plan of length, d, associated

with an observation sequence, Ok, where Γ(e, πGA
) |= GA, then ∀ G ∈ Gk ∃ πG of

length d and associated with observation sequence Ok, where Γ(e, πG) |= G. Here d is

the number of remaining steps from e to each of the goals.

From an equidistant state, we perform a blind search for bounded length d in the

belief space. After d steps if all the goals are found such that the observation sequence

is same then we output the bounded length belief plan and its observation sequence.

A secure non-biased goal-obfuscated plan is then generated by computing a cheap

plan to an equidistant state, e and then computing a bounded length belief plan

from e to the goals. While computing the shortest path from initial state to the

equidistant state, we also compute the belief associated with the equidistant state.

120

Algorithm 6 Computation of Bounded Length Belief Plan and Observation Sequence
Input: PGO, equidistant Output: obs-sequence

1: hmin ←∞; farthestequi ← ∅

2: while equidistant 6= ∅ do

3: sequi, hequi ← equidistant.pop()

4: if hequi < hmin then

5: farthestequi ← sequi

6: end if

7: bequi ← belief with respect to initial state

8: open← Priority_Queue(); closed← {} . Open and closed list

9: open.push(〈sequi, bequi〉); closed← closed ∪ bequi

10: while open 6= ∅ do

11: s, b← open.pop()

12: if g(s) > g(sequi) + hequi then

13: break

14: end if

15: if b |= GOAL-TEST(Gk) then

16: return obs-sequence for s

17: end if

18: for a, s′ ∈ successors(s) do

19: o← O(a, s′)

20: b′ ← Belief-Generation(b, a, o)

21: g(s′)← g(s) + cost(a)

22: if b′ /∈ closed then

23: open.push(〈s′, b′〉)

24: closed← closed ∪ b′

25: end if

26: end for

27: end while

28: end while

29: return obs-sequence for farthestequi

121

Then the initial belief for the bounded length belief plan is populated with the belief

associated with the equidistant state. The computation of the first part is done by

performing a state space search. We search the state space to compute a list of

equidistant states. If from a given state, the nearest and the farthest of the k goals

have the same number of remaining steps then we add it to the list of equidistant

states. The details of this procedure are given in Algorithm 5. The computation of

second part constitutes performing a bounded length blind search in the belief space

starting from each equidistant state until the solution is found. We process the list

of equidistant states obtained in the first part and start our bounded length belief

search from the closest equidistant state to the goals. The details of this procedure

are given in Algorithm 6.

Given the set of equidistant states in the entire state space of PGO, we can obtain

a upper bound on the cost of the secure non-biased goal-obfuscated plan.

Proposition 6. For given Gk, let E = {e1, . . . , en} be the set of all the equidistant

states for PGO, such that, ∀ei ∈ E , πIei be the plan from initial state to ei and πeiG be

the plan from ei to a G ∈ Gk. If πk is a secure non-biased goal obfuscated plan that

solves PGO then,

cost(πk) 6 argmax
e∈E

cost(πIe) + cost(πeG) (6.2)

The above proposition states that the cost of a solution to PGO is bounded by the

cost of a plan via the costliest equidistant state. This proposition can be useful in a

resource sensitive setting, the set of equidistant states can be filtered further before

starting belief space search such that the upper bound on the solution cost is smaller

than or equal to the available cost-bound.

122

Empirical Evaluation

We evaluate the scope and usability of this approach. Our empirical evaluation mea-

sures the following metrics:

1. The impact of different observation models on the extent of obfuscation.

2. The trade-off between additional cost and extent of obfuscation possible.

3. The comparison between run time and plan costs for goal obfuscation planning

versus optimal planning.

In the following, we will discuss the domains used, and the setup of the problems

and observation models for each of these. Then we will discuss the observations and

results derived for each of the three evaluation objectives.

Domains and Experimental Setup We use three IPC domains, namely

Blocksworld, Logistics and Zenotravel to evaluate our approach.

For each of the domains, we randomly generated 50 problem instances. For the

Blocksworld domain, we generated problems with 4 to 8 blocks and towers of max-

imum height 4 for both initial and goal states. For the Logistics domain, we gen-

erated problems with goals consisting of 2 to 6 facts. For the Zenotravel domain,

we generated problems with goals consisting of 2 to 6 facts. We generated 5 random

candidate goals (n=5) for each problem.

In order to explore the first evaluation objective, we generated both partially

and fully observable observation models for all the three domains. The partially ob-

servable models have many-to-one mapping of action-state pairs to observation sym-

bols. For the sake of simplicity, we used lifted action names as observation symbols.

Therefore, the grounded actions taken and associated states are mapped to the corre-

sponding lifted action names. For the Blocksworld domain, the observation symbols

123

were pickup, putdown, stack, unstack. For the Logistics domain, the observation

symbols were load-truck, unload-truck, load-airplane, unload-airplane, drive-truck,

fly-airplane. Finally for the Zenotravel domain, the symbols were board, debark,

fly, zoom, refuel. The fully observable models have one-to-one mapping, that is the

observer is aware of the actions taken and the states reached by the agent.

In order to balance the run-time between the state space search and the belief

space search, we go back and forth between these two searches. For a given problem,

when the heuristic value reaches some threshold (say, reduces by 50% of its value from

the initial state), we start processing the states in the equidistant queue. We then run

the belief space search for the states in equidistant queue until they are exhausted.

Once the equidistant queue has been exhausted, we restart the state space search

again to find further equidistant states exhaustively. After which, we again start with

belief space search. We can modulate the heuristic threshold according to the problem

types and desired objectives. This strategy can be especially helpful when the state

space is large, if the planner spends all its time resource in exploring the state space,

there will be no resource left for exploring the belief space. For the experiments, we

kept the threshold of 50%.

Results The evalution results are presented in Tables 6.3, 6.4 and 6.5. We mod-

ified the STRIPS planner pyperplan [1] to implement our algorithms. To compute

equidistant states we used lmcut heuristic 1 . We ran the experiments with k = 3

for all the domains. We ran our experiments on 2.7 GHz Intel Core i7 processor with

16 GB RAM. The experiments were run with 15 minutes time-out for each problem

instance. The following number of problems reached time-out before a solution could

be found: 4 out of 50 problems in the Blocksworld domain, 19 out of 50 problems
1By using lmcut heuristic, we approximate the equidistant states since it is not the same as the

actual optimal cost h∗(·).

124

Domain Metrics
Observation Models

Many-to-One One-to-One

Blocksworld
Avg obfuscated length (%) 81.50 24.31

Avg run time 46.85 58.39

Logistics
Avg obfuscated length (%) 84.06 62.93

Avg run time 244.68 256.18

Zenotravel
Avg obfuscated length (%) 73.75 48.65

Avg run time 216.14 224.14

Table 6.3: Empirical Evaluation for Different Types of Observation Models. We

Report Average Percentage of Obfuscated Plan Length, and the Average and Standard

Deviation of Time Taken (in Seconds) to Compute the Obfuscated Plan.

Domain Metrics
Cost-bounds

+20% +50%

Blocksworld Avg obfuscated length (%) 71.90 77.75

Logistics Avg obfuscated length (%) 73.25 83.58

Zenotravel Avg obfuscated length (%) 65.81 69.87

Table 6.4: Empirical Evaluation to Explore the Cost Versus Obfuscation Trade-off.

We Examine the Extent of Obfuscation for Different Cost-bounds. We Report Average

Percentage of Obfuscated Plan Length.

in Logistics and 22 out of 50 problems in Zenotravel. These problems were not

considered in the results.

125

Domain Metrics Optimal Plan Obfuscated Plan

Blocksworld
Avg plan cost 5.64 6.57

Avg run time 0.11 46.85

Logistics
Avg plan cost 26.40 27.94

Avg run time 14.87 244.68

Zenotravel
Avg plan cost 8.3 10.79

Avg run time 10.18 216.14

Table 6.5: Empirical Evaluation to Explore Differences in Optimal Plan to Goal and

Obfuscated Plan to Goal. We Report Average Plan Cost and Average, Standard

Deviation of Time Taken in Seconds to Compute the Solution to the Goal.

Table 6.3 Through Table 6.3, we examine how the different observation models

affect the length of obfuscated part of the plan solution. It is not always possible to

find a completely secure non-biased goal-obfuscated plan. In such cases, we output

a partial solution. Here the obfuscated solutions were found without any resource

constraints. For the fully observable observation models, we see that the Blocksworld

domain had the least obfuscated solutions. For the partially observable observation

models, we see that Logistics domain had the most obfuscated solutions.

Table 6.4 Through Table 6.4, we evaluate the impact of constraining the additional

cost on the length of obfuscated parts of the solution. We ran experiments with cost

bound of 1.2 and 1.5 times the optimal cost of the true goal. By only incurring 20%

additional cost, we are able to generate plans with substantial portions obfuscated.

Increasing the additional cost does not dramatically improve the obfuscation perfor-

mance. This highlights the importance of the observation model and candidate goal

126

selection in the resource bounded goal obfuscation problem.

Table 6.5 Through Table 6.5, we compare the run-time and cost differences be-

tween optimal and goal-obfuscated plans. For all the three domains, the plan cost of

obfuscated plans is slightly higher than optimal plans. Although the main difference

lies in the amount of time taken to compute the obfuscated plans. Given there is

enough time available to compute obfuscated plans, the plan cost incurred for the

obfuscation guarantee is not too high.

Note that, as the number of goals in Gk is reduced, it becomes easier to find a

set of equidistant states. Also, note that, we set a timeout of 15 minutes for each

problem. As the the size of Gk is reduced and the time-out limit is increased more

problems can be solved. The agent can use the upper and lower cost-bounds (given

by Propositions 1 and 2) to decide the resource and goal obfuscation trade-off, and

compare this trade-off over a variety of sizes of Gk to choose an appropriate size k.

6.6 Concluding Remarks

In this chapter, we discussed how the obfuscatory behaviors can also be framed

in the controlled observability planning framework, which was introduced in Chapter

4. We discussed the goal obfuscation and plan obfuscation behaviors that allow the

robot to obfuscate its true goal and its activities respectively from an adversarial

observer. We also discussed how the goal obfuscation algorithm can be made secure

to replay attacks, which allow an adversary with access to the algorithm to query it

with different inputs. Further, we also presented the problem of resource bounded

goal obfuscation. Depending on the resource budget, the robot can modulate the

amount of obfuscation it needs. It can then synthesize a secure non-biased goal-

obfuscatory plan which allows the robot to choose a set of decoy goals such that,

127

the bias of the observation sequence towards either of the goals is reduced. Using

these decoy goals, a secure non-biased goal-obfuscatory plan is found. We performed

empirical evaluation to analyze the effectiveness of both the COPP variants as well

as the resource bounded goal obfuscation problem.

128

Chapter 7

PLANNING FOR SIMULTANEOUSLY OBFUSCATORY

AND LEGIBLE BEHAVIOR

There are several environments which involve multiple types of observers, where

some are of adversarial nature while some others are of cooperative nature. In such

cases, the robot has to ensure that its behavior is simultaneously legible to cooperative

observers and obfuscatory to adversarial ones. These observers in the environment

may have access to asymmetric information about the robot’s objectives. Typically,

different observers have disparate sensing capabilities owing to differing levels of prior

knowledge and communication. For example, a robot may establish semaphore ac-

tions that are more meaningful to its allies than to its adversaries. In this work,

we develop methods that allow a robot to synthesize behavior that is simultaneously

obfuscating towards known adversaries and legible towards known allies. We assume

that different types of observers have differing sensor models (for instance, as a result

of prior communication).

Several prior works have looked at generating legible behaviors for cooperative

robots and obfuscating behaviors for adversarial robots [28; 50; 102; 70; 66; 86; 59].

By taking the observer’s sensing capabilities into account, legible behavior helps the

robot to convey necessary information to a cooperative observer, whereas, obfuscating

behavior helps in hiding sensitive information from an adversarial observer. These

approaches, however, assume that the observers in the environment are either entirely

cooperative or entirely adversarial. In real-world settings of strategic importance, a

robot might encounter both types of observers simultaneously, which would neces-

sitate synthesizing a behavior that is simultaneously legible to friendly entities and

129

obfuscatory to adversarial ones. For instance, in soccer, a player may perform feint-

ing trick to confuse an opponent while signaling a teammate. Similarly, in military

planning, troops may execute maneuvers that signal their intended course of action

to their allies while confusing the enemy. Synthesizing a single behavior that is leg-

ible and obfuscatory to different agents, presents significant technical challenges. In

particular, the agent may have to be deliberately less legible to friends so that it can

be effectively more obfuscatory to the adversaries. This problem gives rise to a novel

optimization space that involves trading-off the amount of obfuscation achieved for

adversaries with the amount of legibility desired for friends.

We now present a novel problem framework called mixed-observer controlled ob-

servability planning problem, mo-copp, that allows an autonomous agent to simul-

taneously control information yielded to both cooperative and adversarial observers

while achieving its goal. Essentially, this framework models and exploits situations

where different observers have differing sensing capabilities, which result in different

"perceptions" of the same information. We then present two solution approaches to

solve this problem. In the first solution approach, we propose a novel integer program-

ming (IP) encoding, which provides an optimal solution given a fixed time horizon.

This involves maximizing the amount of obfuscation while maximizing the amount of

legibility with respect to the agent’s objectives. In the second approach, we present a

heuristic-guided search algorithm, which leverages an approach [59] that assumes en-

tirely cooperative or entirely adversarial settings. Through theoretical and empirical

analysis, we explore the properties of the two solution approaches. Additionally, we

show that for mixed-observer settings our solution approaches add significant value

over approaches that consider either cooperative observers or adversarial observers in

isolation.

130

(a) The actor’s goal is to deliver two packages to the delivery area:

(b) Plan-1 - Actor Delivers 1 Package from Factory A and 1 from B:

(c) Plan-2 - Actor Delivers Both the Packages from Factory A, Helping Observer-C and

Thwarting Observer-X:

Figure 7.1: The Differences in Belief Updates Induced by the Same Plan for Two

Observers with Noisy Sensors. Here Observer-X is Adversarial and Observer-C is

Cooperative.

131

Example

Consider the example in Figure 7.1, where a truck agent has to deliver 2 packages.

There are 4 packages as shown in Figure 7.1a: two at factory A and two at factory

B. Therefore, there are 6 candidate goals in total (i.e., all combinations of cardinality

2). Let there be two observers who know the initial inventory at each factory, but

do not know which two packages will be delivered by the agent. Each observer has

different sensors (or sources of information) about the truck’s activities, such that,

observer-C (cooperative observer) can differentiate between packages loaded from A

and B (but not the individual package in a factory), whereas observer-X (adversarial

observer) cannot differentiate between any of the packages. The truck agent wants

to convey its true goal to observer-C but obfuscate it to observer-X.

Consider plan-1 in Figure 7.1b, where the truck agent loads one package each from

A and B. Here, observer-C cannot distinguish the packages (there are 4 possible goals

that satisfy the observations). Now, consider plan-2 in Figure 7.1c, where the truck

agent loads both the packages from A (or loads both the packages from B). Here,

observer-C can infer the identity of the loaded packages (there is only 1 possible

goal), while observer-X still does not know the identity of the packages (there are

6 possible goals). Therefore, plan-2 makes the true goal legible to observer-C while

obfuscating the true goal with all the possible goals for observer-X.

7.1 mo-copp

This problem setting involves an actor (robot) and two observers, where one ob-

server is adversarial towards the actor whereas the other is cooperative. We assume

that the actor has full observability of its activities and knows the sensor models used

by the observers. When the actor takes an action and reaches a new state, each ob-

132

server receives an observation. If the observers have different sensors, they will receive

different observations for the same activity. After obtaining the observations, each

observer updates its belief. The actor leverages the known limits in the observers’

sensors to control the observability of multiple observers in the environment simul-

taneously. Our formal framework can be extended easily to multiple adversarial and

cooperative observers, each with its own set of noisy sensors. We assume that the

true goal of the actor is not known to either of the observers and that the actor may

use sub-optimal cost plans to hide or convey information about goals. Therefore, our

objective is to develop algorithms that would allow the actor to hide its true goal

from the adversarial observer by maximizing the number of candidate goals possible

in the adversary’s belief, and to convey its true goal to the cooperative observer by

minimizing the number of candidate goals possible in that observer’s belief.

Let A represent the actor, C represent a cooperative observer and X represent an

adversarial observer.

Definition 36. A mixed-observer controlled observability planning problem

is a tuple, mo-copp = 〈Λ,M,G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉, where,

• Λ = {A,C,X} is the set of agents.

• M = 〈F ,A, I, GA, cA〉 is A’s planning problem.

• G = {G1, G2, . . . , Gn−1, GA} is the set of candidate goals, where GA is the true

goal of A, which is not known to both C and X.

• Ωi is the set of observation symbols for agent i, which are emitted when A takes

an action and reaches a new state. Further, ΩA = {oAa,s|a ∈ A, s ∈ S}.

• Oi : A × S → Ωi is agent i’s deterministic observation function. Further, OA

is an accurate observation function that maps each action-state pair to a unique

133

observation, ∀ a, a′ ∈ A, s, s′ ∈ S, a 6= a′ ∧ s 6= s′ : OA(a, s) 6= OA(a′, s′), while

OX and OC are noisy observation functions that map multiple action-state pairs

to the same observation symbol.

• Bi0 is the initial belief of an observer, i ∈ {X,C}. The initial belief is a set of

states inclusive of I.

From the above definition, we see that, while X and C can have arbitrary sensor

models 1 with partial observability, A has full observability, due to one-to-one map-

ping of its observation function. The observers are aware of the planning domain of

the actor and of the candidate goals, except they do not know which candidate goal

is the actor’s true goal, GA.

Sensor Models

We assume that every time the actor acts, each i ∈ Λ receives an observation

consistent with its observation function. The observation function of an observer

i ∈ {X,C} supports many-to-one mapping of 〈a, s〉 pairs to observation symbols, i.e.,

∃a, a′ ∈ A, s, s′ ∈ S, a 6= a′ ∧ s 6= s′ : Oi(a, s) = Oi(a′, s′). For an agent i, the inverse

of observation function gives the set of 〈a, s〉 pairs consistent with an observation

symbol oi ∈ Ωi, represented as O−1
i (oi).

Each observer i ∈ {X,C} maintains its own belief, which is a set of states. When

A takes an action a in state s and reaches new state s′ at time t, the observers

receive observation oit, and perform a belief update, Bit = {ŝ | ∃â, s̄ Γ(s̄, â) = ŝ; s̄ ∈

Bit−1;Oi(â, ŝ) = oit}. That is, the belief is updated using the previous belief and

the observation received. For a plan π of horizon T , the final belief of observer i is

represented as BiT and π is associated with a sequence of observations, ObsSeqi(π) =

1Sensor model of an agent i refers to 〈Ωi,Oi〉.

134

{oi1, . . . , oiT } for each observer i. Note that the belief of A is essentially a single state

due to full observability.

Incorrect Sensor Model

It is also possible that an observer’s sensor model is compromised and is showing

incorrect mapping, in the sense that it attributes observations to 〈a, s〉 pairs that

could never truly yield those observations. More precisely, when an observer i’s true

(or uncompromised) observation function is Oi, it may be mistaken, and believe that

its observation function is O′i, and ∀a ∈ A, s ∈ S,O′i(a, s) 6= Oi(a, s). For e.g., the

agent goes north but the observation function gives observation that is consistent

with going east or west.

Proposition 7. Given observer i ∈ {X,C} has an incorrect observation function,

O′i, when A executes at ∈ A and reaches st ∈ S emitting oit ∈ Ωi at t ∈ {1, . . . , T },

the belief update satisfies the following: st 6∈ Bit.

When A acts, Oi(at, st) = oit. By definition of incorrect sensor model, ∀a ∈ A, s ∈

S,Oi(a, s) 6= O′i(a, s). Hence, 〈at, st〉 6∈ O′i
−1(oit). Further, by definition of belief

update, st 6∈ Bit.

The above proposition states that if an observer’s sensor model has an inaccurate

mapping as defined above, then the true state of A is not part of its belief update.

If A knows that observer i is using O′i, instead of Oi, it may use it to its advantage,

either to obfuscate further or to convey the true objective despite it. We focus on

uncompromised sensor models for clarity in technical descriptions, but our approach

extends naturally to incorrect sensor models.

135

7.1.1 mo-copp Solution

A plan π solves a mo-copp = 〈Λ,M, G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉, iff: Γ(I, π)

|= GA. In other words, any solution toM is a solution to mo-copp. We measure the

quality of a mo-copp solution in terms of the extent to which the plan is legible to C

and obfuscating to X. Given a solution plan, π, let GπX = {G ∈ G : ∃s ∈ BX
T , s |= G},

denote the goals present in X’s final belief and GπC = {G ∈ G : ∃s ∈ BC
T , s |= G},

denote the goals present in C’s final belief. Here |GπX| represents the amount of goal

obfuscation for X, and by increasing the number of goals in GπX, we can increase

the goal obfuscation. Similarly, |GπC| represents the amount of goal legibility for

C, and by decreasing the number of goals in GπC, we can increase the goal legibility.

We now introduce a goal difference metric to estimate the quality of a solution plan

to mo-copp.

Definition 37. Given a solution plan π that solves mo-copp, where |G| = n, the

goal difference, of π is given by:

GD(π) =
|GπX| − |GπC|
n− 1

(7.1)

where n− 1 is the difference between ideal values of GπX and GπC.

An optimal solution to mo-copp simultaneously maximizes goal obfuscation and

goal legibility. In order to maximize goal obfuscation to X while maximizing goal

legibility to C, we can maximize the difference between the number of goals in GπX

and GπC, as the number of goals in GπX have to be higher in number while those in

GπC have to be lower in number. This is exactly what equation 7.1 does. Higher

the goal difference, more the goal obfuscation and goal legibility. Equivalently, closer

the GD(π) value to 1, better is the plan quality. A solution plan with GD(π) = 1

is an optimal plan. E.g., in Figure 7.1c, plan-2 is an optimal plan with GD(plan-

136

2) = 6−1
6−1

= 1. The denominator is essential for comparing the quality of plans across

different problems, with varying number of candidate goals.

Let π̂ be a valid plan that is consistent with observation sequence of a solution plan,

π, and the set of such plans is represented as, ObsSeq−1
i (π) for observer i. Given the

observer’s initial belief, there exists a valid plan that satisfies each goal in observer’s

final belief. That is, ∀i ∈ {X,C}, G ∈ Gπi ,∃si0 ∈ Bi0, π̂ ∈ ObsSeq−1
i (π) : Γ(si0, π̂) |= G.

Proposition 8. Given a solution plan, π, to mo-copp, if |GπC| = 1, then GA ∈ GπC.

Proof. By Definition 36, I ∈ BC
0 . C receives a sequence of observations {oC1 , . . . , oCT }.

While performing belief update at any time step t, 〈at, st〉 ∈ O−1
C (oCt). Therefore, st ∈

BC
t . Further, solution to mo-copp satisfies Γ(I, π) |= GA, therefore GA ∈ GπC.

The above proposition states that when maximum goal legibility is achieved, only

one goal GA is present in C’s final belief.

7.2 mo-copp Plan Generation

We now present two solution approaches. In the first approach, we formulate mo-

copp as a constraint optimization problem and provide an IP encoding to solve it in

T steps. In the second approach, we use a heuristic-guided forward search to achieve

preset levels of goal obfuscation and legibility. The IP encoding provides an optimal

solution for the given horizon by maximizing obfuscation while maximizing legibility,

while the search algorithm generates solutions that satisfy a prespecified lower bound

on the amount of goal obfuscation and goal legibility.

7.2.1 mo-copp as Integer Program

In the following, we present our IP encoding.

137

Variables

We require the following binary variables for our encoding: (1) ∀a ∈ A, t ∈ {1, . . . , T },

xa,t is an indicator variable for action a at time t, (2) ∀s ∈ S, t ∈ {0, . . . , T }, ys,t is an

indicator variable for state s at time t, (3) ∀i ∈ {X,C}, oi ∈ Ωi, t ∈ {0, . . . , T }, wio,t

is an indicator variable for observation oi at time t, (4) ∀i ∈ {X,C}, s ∈ S, t ∈

{0, . . . , T }, bis,t is an indicator variable for state s in belief Bi at time t, (5) ∀i ∈

{X,C}, s ∈ S, a ∈ A, t ∈ {0, . . . , T }, his,a,t is an indicator variable for action a be-

ing applicable in state s in belief Bi at time t, (6) ∀i ∈ {X,C}, G ∈ G, giG,T is an

indicator variable for a goal G present in belief BiT .

Objective Function

The IP objective function is given by:

maximize
∑
G∈G

gXG,T −
∑
G∈G

gCG,T (7.2)

In equation (7.2), the first term denotes |GπX| i.e. amount of goal obfuscation for

X, and the second term denotes |GπC| i.e. amount of goal legibility for C. Essentially,

it finds a solution with maximum possible GD. We skip the denominator of the GD

metric, as it is a constant and does not contribute to the optimization. In the first

term, we maximize the goal obfuscation with respect to X and in the second term

we maximize the goal legibility with respect to C. This provides a single solution

that achieves the maximum difference between the number of goals possible for the

two observers. Note that, it would make sense to get the Pareto optimal solutions

if we wanted to explore all the combinations of goals achieved for the two observers.

However, that is not our objective.

138

Constraints

The IP constraints are written as:

∀s ∈ S, s = I : ys,0 = 1 (7.3)

∀s ∈ S, s 6= I : ys,0 = 0 (7.4)

∀s ∈ S :
∑
GA∈ s

ys,T = 1 (7.5)

∀i ∈ {X,C}, s ∈ Bi0 : bis,0 = 1 (7.6)

∀i ∈ {X,C}, s 6∈ Bi0 : bis,0 = 0 (7.7)

∀i ∈ {X,C}, G ∈ G,m > |{s| G ∈ s}| : m ∗ giG,T −
∑
G ∈ s

bis,T > 0 (7.8)

∀a ∈ A, t ∈ {1, . . . , T }, prea = {s | pre(a) ∈ s} : xa,t 6
∑
s∈prea

ys,t−1 (7.9)

∀s, s′ ∈ S, t ∈ {1, . . . , T }, adds′ = {a| pre(a) ∈ s ∧ add(a) \ delete(a) ∈ s′},

pres′ = {s| pre(a) ∈ s ∧ add(a) \ delete(a) ∈ s′} :∑
a∈adds′

xa,t +
∑

s∈pres′

ys,t−1 − 2 ys′,t > 0 (7.10)

∀a ∈ A, t ∈ T , prea = {s | pre(a) ∈ s}, posta = {s′ | add(a) \ delete(a) ∈ s′} :∑
s∈prea,s′∈posta

ys,t−1 ys′,t = xa,t (7.11)

∀i ∈ {X,C}, o ∈ Ωi, t ∈ {1, . . . , T } : wio,t =
∑

a,s′∈Oi
o

xa,t ys′,t (7.12)

∀i ∈ {X,C}, s ∈ S, t ∈ {1, . . . , T }, a ∈ adds, adds = {a| pre(a) ∈ s} :

bis,t−1 + wio,t − his,a,t 6 1 (7.13)

∀i ∈ {X,C}, s ∈ S, o ∈ Ωi, t ∈ {1, . . . , T }, a ∈ adds, adds = {a| pre(a) ∈ s} :

his,a,t − bis,t−1 6 0 (7.14)

139

∀i ∈ {X,C}, s ∈ S, t ∈ {1, . . . , T }, a ∈ adds, s′ ∈ posts

adds = {a| pre(a) ∈ s}, posts = {s′| add(a) \ delete(a) ∈ s′} :

his,a,t − bis′,t 6 0 (7.15)

∀i ∈ {X,C}, s ∈ S, o ∈ Ωi, t ∈ {1, . . . , T }, a ∈ adds, adds = {a| pre(a) ∈ s} :

his,a,t − wio,t 6 0 (7.16)

∀i ∈ {X,C}, s, s′ ∈ S, t ∈ {1, . . . , T },

adds′ = {a| pre(a) ∈ s ∧ add(a) \ delete(a) ∈ s′},

pres′ = {s| pre(a) ∈ s ∧ add(a) \ delete(a) ∈ s′} :∑
s∈pres′ ,a∈adds′

his,a,t − bis′,t > 0 (7.17)

∀t ∈ {1, . . . , T } :
∑
a∈A

xa,t 6 1 (7.18)

Constraints (7.3) and (7.4) initialize the state variable for initial state, (7.5) says

that a state that satisfies the true goal should be achieved in the last time step for A.

Constraints (7.6) and (7.7) initialize the initial belief variable for both the observers.

Constraint (7.8) says that if a goal is satisfied in the final belief of an observer then the

corresponding goal variable will be true for that observer. Constraint (7.9) through

(7.11) enforce the transition function, Γ(·), on actor’s state and action. Specifically,

constraint (7.9) validates the applicability of an action in a state, constraint (7.10)

states that for a resulting state to be true both the action and the state in which

it is applied should be true, and similarly constraint (7.11) validates an action with

respect to its previous state and the resulting state. Constraint (7.12) enforces the

corresponding observation symbol for each observer depending on the 〈a, s′〉 pair.

Constraints (7.13) through (7.17) enforce a belief update. Specifically, constraint

(7.13) states that an action is not applicable in a belief state if either the belief state

140

or the observation is untrue. Constraint (7.14) states that an action cannot be applied

in a belief state that is untrue. Constraint (7.15) states that an action cannot be true

if the resulting belief state is untrue. Constraint (7.16) states that an action cannot

be true if the corresponding observation is untrue. Constraint (7.17) states that a

belief state is true if the sum of actions leading to it is at least 1. Constraint (7.18)

ensures at most one action is possible at each time step for the actor.

Proposition 9. The IP encoding listed above which takes time horizon T as input,

solves a mo-copp = 〈Λ,M,G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉 such that, the following

properties hold:

• Soundness: A solution to the IP will solve mo-copp.

• Completeness: If there exists a plan that solves the mo-copp in T time steps,

then it will be a feasible solution for the IP encoding.

• Optimality: An optimal solution to the IP encoding will be a plan that solves

the mo-copp with an optimal value of GD given the time horizon, T .

Since a solution to the IP, πIP , satisfies (7.4), it solves mo-copp. If there exists

a plan πT of T time steps that solves mo-copp, Γ(I, πT) |= GA, then πT will satisfy

the constraints (7.4), (7.9)-(7.11) and (7.18). The IP encoding uses the numerator of

GD metric as its objective function. An optimal solution to the IP encoding, π∗IP , is

an optimal plan to mo-copp given plans of T time steps.

Modulating Actor’s Behavior

The objective function presented in (7.2) trades off goal obfuscation with goal leg-

ibility for the observers. However, the actor can ensure a predefined level of goal

141

obfuscation (say obfuscate with at least k candidate goals), using the following con-

straint:

∑
G∈G

gXG,T > k, s.t. 1 6 k 6 |G| (7.19)

Similarly, to ensure predefined level of goal legibility with respect to certain num-

ber of candidate goals (say legible with at most j goals), the following constraint can

be added:

∑
G∈G

gCG,T 6 j, s.t. 1 6 j 6 |G| (7.20)

These kind of constraints allow the actor to filter out solutions that do not satisfy

minimum bound for goal obfuscation and goal legibility. The actor can improve the

robustness of the plans generated by using these constraints.

7.2.2 Search Algorithm

In this section, we show that it is possible to leverage search techniques that

address goal obfuscation and goal legibility in isolation to solve mo-copp. We adapt

Algorithm 3 introduced in Chapter 4 to address goal obfuscation and goal legibility

simultaneously to two different observers. We specify bounds on the amount of goal

obfuscation and goal legibility desired, similar to the ones seen in the IP: obfuscate

with at least k goals, make it legible with at most j goals. These bounds, Φ =

〈ΦX,ΦC〉, are given as input to the search algorithm. Note that, in order to guide

the search with the heuristic described below, the candidate goals need to be chosen

beforehand.

Each search node maintains the associated beliefs for both observers. The approx

function generates an approximate belief, bi∆, of size ∆ (i.e. cardinality of bi∆ is ∆).

142

Algorithm 7 Heuristic-Guided Search
1: Initialize open, closed and temp lists; ∆ = 1

2: 〈bX∆ , bC∆〉 ← approx(I,BX0 ,BC0)

3: open.push(I, 〈bX∆ , bC∆〉, 〈BX0 ,BC0 〉, priority = 0)

4: while ∆ 6 |S| do

5: while open 6= ∅ do

6: s, 〈bX∆ , bC∆〉, 〈BX ,BC〉, hnode ← open.pop()

7: if |bX∆ | > ∆ or |bC∆| > ∆ then

8: temp.push(s, 〈bX∆ , bC∆〉, 〈BX ,BC〉, hnode)

9: continue

10: end if

11: add 〈bX∆ , bC∆〉 to closed

12: if s |= GA and BX |= ΦX and BC |= ΦC then

13: return π,ObsSeqX(π), ObsSeqC(π)

14: end if

15: for s′ ∈successors(s) do

16: oX ← OX(a, s′); oC ← OC(a, s′)

17: B̂X = Update(BX , oX); B̂C = Update(BC , oC)

18: 〈b̂X∆ , b̂C∆〉 ← approx(s′, B̂X , B̂C)

19: hnode ← hGA
(s′) + hGk−1

(B̂X)− hGG−j
(B̂C)

20: add new node to open if 〈b̂X∆ , b̂C∆〉 not in closed

21: end for

22: end while

23: increment ∆; copy items from temp to open; empty temp

24: end while

143

bi∆ is always inclusive of the true state of the actor, this is because the actor can only

take actions that are consistent with its true state. If all such ∆−sized beliefs are

explored then bi∆ of ∆ + 1 size is computed, and this node gets put in the temporary

list and is explored in the next outer iteration when ∆ has been incremented. For

each ∆, all ∆-sized unique combinations of belief (that include the actual state of

the actor) are explored. This allows systematic and complete exploration of multiple

paths to a given search node. The inner iteration performs heuristic guided forward

search (we use greedy best first search) to find a plan while tracking at most ∆ states

in each bi∆. In the inner loop, the node expansion is guided by (1) customized heuristic

function, which computes value of the node based on true goal and belief constraints

given by Φ for the observers, and (2) goal test, which checks for satisfaction of true

goal and satisfaction of the belief constraints given by Φ. The algorithm stops either

when a solution is found or when all the ∆ iterations have been explored.

Proposition 10. The search algorithm listed above which takes goal-constraints Φ as

input, solves a mo-copp = 〈Λ,M, G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉 such that, the

following properties hold:

• Soundness Any solution to the search algorithm is a plan that solves the mo-

copp.

• Completeness If there exists a plan that solves mo-copp given goal-constraints

Φ, it will be found by the search.

A solution to the search algorithm solves mo-copp, since the goal test ensures

the true state of A satisfies GA. The search algorithm necessarily terminates in |S|

iterations of the ∆ parameter. The ∆ parameter allows systematic exploration of

unique ∆-sized combinations of belief, starting with ∆ = 1 until a solution is found

or the solution space is explored, ∆ = |S|. The goal test checks for satisfaction of

144

constraints in Φ. Hence, a plan that solves mo-copp given Φ will be found by the

search algorithm.

Property In both the solution approaches, we can assert a lower bound on the

extent of goal obfuscation and goal legibility for a mo-copp solution plan. In IP, we

can specify the aforementioned goal constraints to assert this minimum value, while

in the search, the goal tests allow us to assert it. By setting k, j to desired values,

we can eliminate solutions with low GD score. This affords the following guarantee:

Proposition 11. Let X and C be perfectly rational adversarial and cooperative ob-

servers respectively. Given a mo-copp = 〈Λ,M,G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉

with equally probably goals, |G| = n, and goal constraints of at least k goal obfuscation

for X and at most j goal legibility for C, then a solution plan, π, gives the following

guarantees:

1. X can infer GA with probability 6 1/k,

2. C can infer GA with probability > 1/j, and

3. Goal difference metric, GD(π) > k−j
n−1

Given |GπX| > k, X can infer GA with probability 6 1/k. Similarly, given |GπC| 6 j,

C can infer GA with probability > 1/j. Also, similarly, GD(π) > k−j
n−1

. The above

proposition states that, based on the observation equivalence there is no additional

information revealed about the actor’s true goal. Therefore, we can derive goal de-

tection upper bound for X and lower bound for C. Also this allows us to derive a

lower bound on the plan quality.

145

Exploiting Adversarial Observer’s Incorrect Sensor Model

The actor can leverage X’s incorrect sensor model (if it knows that O′X is being used,

instead of OX) to ensure that the true goal never appears in X’s final belief. This can

be achieved through both the solution approaches. For the IP encoding, an additional

constraint gXGA,T = 0 can be introduced to ensure the absence of the true goal from

X’s belief. Similarly, for the search algorithm, the goal test of the search can be

modified to additionally check for absence of GA in X’s final belief.

Proposition 12. Given a mo-copp = 〈Λ,M,G, {Ωi}i∈Λ, {Oi}i∈Λ, {Bi0}i∈{X,C}〉 where,

X has an incorrect observation function, O′X, the actor can compute a solution plan,

π, such that, GA 6∈ GπX.

Proof. Given the incorrect sensor model, O′X, from Proposition 7, it follows that, at

any time step, t, st 6∈ BX
t . Also, although π is valid solution to mo-copp that satisfies

Γ(I, π) |= GA, in time step T , GA 6∈ BX
T . Therefore, a valid solution plan, π can

satisfy the constraints that ensure GA 6∈ GπX.

The above proposition states that the incorrect sensor model can be used by the

actor to compute a solution that ensures the absence of true goal from the adversarial

observer’s belief. In a similar fashion, if a cooperative observer has an incorrect

sensor model, by using similar constraint/goal test condition, the actor can ensure

the presence of true goal for a cooperative observer. Our formulation and solution

approaches allow the actor to flexibly control its activities to ensure the presence or

absence of desired candidate goals.

7.3 Empirical Evaluation of mo-copp Solutions

In this section, we evaluate the performance of our approaches against a baseline

and discuss the relative strengths of both the approaches using 6 domains. We also

146

compare the quality of the solutions generated by our approach against an approach

that assumes either entirely adversarial or entirely cooperative observers.

7.3.1 Domain Setup

For the evaluation, we look at 6 domains: Gridworld, Box Pushing, Recycling

Robot, Blocksworld, Logistics and Driverlog. In Gridworld, the actor can move in

cardinal directions. OX, consists of two observations, vertical for movement along N

or S and horizontal otherwise. OC consists of symbols, north-east for N or E and

south-west otherwise. In Box Pushing [56], the actor’s goal is to face the box and

push it to the topmost row. The actions available are: move-forward, stay, turn-left,

turn-right. OX consists of two symbols, turn when the agent performs turning actions

and move, otherwise. OC consists of move-right when turning right or moving and

leftwards otherwise. In Recycling Robot [94], the actor’s objective is to collect cans

and put them in recycling bins. The actions available are: N, S, E, W, pick-up, drop,

charge, stay. OX consists of four symbols, horizontal when moving E or W, vertical

when moving N or S, using-gripper when picking or dropping and charging otherwise.

OC consists of north-east, south-west, charging-picking, and staying-dropping. For

the three IPC domains, we use the lifted action names as observations for adversarial

observer and lifted action names with objects as observations for cooperative observer.

For example, given Blocksworld with 4 blocks a, b, c, d, for C, we can have stack-a-b

to represent stacking of a or b on any other block and similarly stack-c-d. This is done

for all the lifted actions. We produced similar observations for Logistics and Driverlog.

In modeling the observations, we use the notion that in realistic scenarios, it’s likely

that the actor may provide the ally with tools/information to infer observations more

clearly.

We implemented our IP encoding using Gurobi optimizer [38]. We implemented

147

Figure 7.2: Comparison of Average and Standard Deviation for Goal Difference (GD),

Plan Length and Run Time Using a Baseline Planner, IP Planner and Heuristic-

guided Planner over Three Domains.

the heuristic-guided search using the STRIPS planner Pyperplan [1] with hsa [53]

heuristic. We used hsa heuristic because it gave better performance. For baseline

planner, we used greedy best first search with hsa heuristic. We ran our experiments

on 3.5 GHz Intel Core i7 processor with 16 GB RAM. We used Gridworld of size 8x8,

Box Pushing of size 5x5 with a single box, Recycling Robot of size 4x4 with a can

and battery of 5 levels, Blocksworld with 5 blocks, and Logistics and Driverlog had

goals with 4 facts each. For each domain, we generated 30 problems with random

148

initial state goals. For the first 3 domains, we created 3 goals per problem, and for

the next 3 domains, 5 goals per problem.

Relative Strengths

We report the averages and standard deviation of GD, plan length and time taken

for baseline, IP and search algorithm in Figure 7.2. For the baseline, we computed

plans considering only GA. For the IP, we set the plan horizon to 12 for Gridworld,

12 for Box-Pushing and 10 for Recycling-Robot. If solutions were not found for that

horizon, we incremented the horizon by 2. The IP did not run for the complex IPC

domains, so we only display results for the first three domains. For the search, we set

the minimum number of goals for X to 2 (at least 2 goals), and maximum number

of goals for C to 2 (at most 2 goals). For all three algorithms, the GD is calculated

by counting the total number of goals present in the observers’ beliefs. We tested for

statistical significance of the results by performing independent measures ANOVA

to reject the null hypothesis that the three algorithms are the same and that the

differences are due to any randomness in the experiments (e.g., the randomly chosen

goals). For Gridworld, we found that the p-value is less than 0.00001 for GD, as well

as for plan length and run time considering the results of all 3 algorithms. This is

true for Box-Pushing and for Recycling-Robot as well. All the results are significant

at p < 0.05.

The IP approach has several advantages. Firstly, it produces optimal solutions

given a time horizon for the mo-copp problem. Secondly, it provides a lot of flexi-

bility: it automatically chooses the best candidate goals to be added to or removed

from the final beliefs of the observers. Also, if we want to specifically add or remove

a particular goal from the observer’s final belief, it is easy to add the necessary con-

straint. These advantages were evident in the results: IP has higher GD for all the 3

149

domains. On the other hand, the search algorithm is faster and generates satisficing

solutions that meet the goal constraints: the average time for search is consistently

lower than IP for all the domains. Also the search solutions are shorter in length than

those of the IP. The baseline although fastest (satisficing solution to a single goal)

produces worst plan quality (GD). Additionally, the search can run more complex

problems. The average and standard deviation GD for the IPC domains is reported

in Figure 7.3.

Figure 7.3: (a) Table Shows the Average and Standard Deviation GD for IPC Do-

mains. (b) Graph Shows Relative GD Between Our Algorithm and Approaches That

Achieve Obfuscation/Legibility in Isolation.

Comparison Against Other Approaches

Here, we report the GD metric for IPC domains and show the relative performance

of our algorithm against approaches that assume entirely adversarial or entirely coop-

erative observers using IPC domains. We used k-ambiguous and j-legible algorithms

150

from [59] for achieving obfuscation and legibility in isolation as baseline. We compute

the GDs for the baseline goal obfuscation and goal legibility by allowing minimum

constraint for the other case. That is, when running goal obfuscation algorithm, the

minimum constraint is to be legible with respect to at most 5 goals. Similarly, when

using goal legibility algorithm, the minimum constraint is to be obfuscating with re-

spect to at least 1 goal. We set a timeout of 20 minutes, and altogether 7 problems

timed out (3 from Logistics, 4 from Driverlog) out of 90 problems. Here we set k and

j values to 3. In Figure 7.3, we report the relative GD percentages for solutions that

achieve goal obfuscation and goal legibility in isolation with respect to GD of the

solutions produced by our algorithm. The GD is computed by counting the number

of goals in each observer’s belief.

From Figure 7.3, we can see that, our approach consistently outperforms the

obfuscation and legibility algorithms with respect to the plan quality of the solutions

(GD). This is because, as stated in Proposition 11, our approach makes sure that

each solution achieves a minimum amount of GD. In this case, the minimum is 0

(since k and j values are set to 3). This ensures that our search algorithm does not

output solutions with GD < 0, which was not the case for the other two approaches,

as is seen from the relative GD percentages. This evaluation shows that the existing

approaches that address obfuscation and legibility in isolation are not sufficient to

produce good quality solutions to mo-copp.

7.4 Concluding Remarks

In this chapter, we discussed the generalization of the controlled observability

planning framework, namely mo-copp, that supports both cooperative as well as ad-

versarial observers. We presented two solution approaches to solve this problem: the

first approach solves the problem optimally by framing it as a constraint optimization

151

problem and solves using an IP encoding, while the second approach leverages the

COPP algorithm (Algorithm 3) to simultaneously balance goal obfuscation and goal

legibility. We demonstrated the effectiveness of both the approaches using 6 domains.

152

Chapter 8

PLANNING FOR ASSISTIVE BEHAVIOR

So far in this thesis, the problem settings have assumed that the human observer is

passive and that she only observes the robot to infer its activities. In a more realistic

scenario, the human may be observing the robot’s activities, to understand if they

interfere with her own goals and plans. Therefore, to accommodate such a setting, we

will extend the COPP formulation from a single actor (active robot - passive human

observer) setting to a multi-actor (active robot and active human observer) setting,

which we refer to as Multi-Agent Controlled Observability Planning Problem (ma-

copp). In this chapter, we will consider a scenario where the robot is playing the

role of a proactive assistant.

While assisting the humans may be tricky for an AI agent even when the humans

explicitly request for assistance, it is even more challenging for the agent to provide

the assistance when it has to do it proactively. Not only does it have to reason over

the human’s goals to synthesize an assistive behavior that reduces the human’s costs,

but it also has to make sure that the assistance it provides can be recognized by the

human, who may not be expecting it. Like the proverbial justice, proactive assistance

should not only be provided, but should be seen to be provided. This further becomes

challenging in environments where the human may have partial observability of the

AI agent’s activities. The agent thus needs to synthesize communicative behaviors –

be they purely epistemic (speech acts) or ontic actions with epistemic effects – which

allow the human to recognize the assistance. This requires it to control the human’s

observability by reasoning over her belief states.

This work specifically looks at the problem of providing proactive assistance to a

153

human in an environment where the AI agent and the human coexist, and have partial

observability of each other’s activities. There are several real-world workspaces like

factory floors, warehouses, restaurants, nursing homes for elderly, disaster response

areas, etc., where this problem of providing proactive task assistance to the involved

humans is important. Our formulation considers a scenario where the AI agent is

aware of the tasks being allocated to the human by the ecosystem and may also know

the rules and protocols of the ecosystem. We assume that the agent has access to an

input that captures the human’s planning process for her goals. For instance, prior

works that study the problem of action model acquisition [104; 103] can be used to

derive the human’s planning process. This allows it to synthesize assistive plans and

to reason over the impact of those plan on the human’s goals and plans. This leads

us to the first principle: (1) A proactive assistant’s behavior should only decrease the

human’s optimal cost towards her goal.

Further, since the agent is providing proactive assistance, it is essential for it to en-

sure that the human recognizes the assistance and modifies her original plan towards

her goal. Additionally, our formulation accommodates environments where both the

human and the AI agent may not have full visibility of each other’s activities. For

instance, the human may not know what activities were performed by a robot in an-

other room. Therefore, it should be able to take into account the human’s perception

limitations as well as the possible ways of communicating necessary information to

her. This leads us to the second principle: (2) A proactive assistant should make the

human aware of the potential reduction in her cost as a result of its assistance.

Lastly, it is important to capture the cost of the assistance to the human. For

instance, if the human has to wait for a really long time for the agent to provide

assistance, then the human may instead prefer to work by herself. Since, the human

is actively involved in the overall plan, it is not only necessary to reduce the human’s

154

(a) (b)

(c) (d)

Figure 8.1: Illustration of an Assistive Joint Plan in Urban Search and Rescue Do-

main. (a) the Robot Collects Items Required for a Side Goal (Fire Extinguisher) and

Human’s Goal (Medkit) in a Wagon, (b) Makes the Human Aware of the Items It

Is Carrying by Showing Them, (c) Leaves the Wagon in Room E. (d) the Human

Collects the Medkit from Room E to Accomplish Her Goal.

155

cost to her goal, but also to reduce her overall effort resulting from processing the

agent’s behavior. Therefore, (3) A proactive assistant should optimize for the overall

cost incurred by the human in terms of the time taken (or resources needed) to partic-

ipate in the overall plan. Together these principles guide our proactive assistant. In

the following sections, we propose a Monte Carlo Tree Search (MCTS) based solution

that modulates the human’s belief by either communicating necessary information or

limiting irrelevant information (i.e. by controlling human’s observability) to commu-

nicate the potential cost reduction to the human. We perform an empirical evaluation

and a user study to assess the utility of our approach.

Example

Let’s consider a concrete example in an urban search and rescue domain. Here a

human commander and a robot are operating on a floor as shown in the Figure 8.1a.

The human’s task is to find a medkit on this floor. She has access to the floor map

but does not know where the medkit is. Hence, her cost for accomplishing the task

is very high (she has to search each room on the floor). The robot is aware of the

task allocated to the human. It is also working on a non-urgent side goal of dropping

a fire extinguisher to room E (as shown in Figure 8.1c). The robot who is already

operating on that floor has more information about the locations of the items and

is capable of assisting the human. However, since the assistance is being provided

proactively, it is important for the robot to ensure that the human can recognize how

the assistance optimizes her task. The robot assists as detailed in Figures 8.1a to

8.1c, where it first collects the medkit in its wagon, and then it performs an action

to display the contents of the wagon to the human and then transports it to room E.

This allows the human to form a belief that the medkit is in room E. She can now

optimize her goal, as shown in Figure 8.1d.

156

8.1 Related Work

The problem of synthesizing a proactive assistant is directly connected to the

prior literature on modeling assistive agents. Starting from the seminal work on

SharedPlan theory [37] which discussed the notion of “intentions-to" and “intentions-

that" constructs to more recent work on the development of a theory of assistance,

there has been a lot of research in this general direction. In the SharedPlan theory [37],

the “intentions-that" constructs refer to the acts that are performed by an agent as a

responsibility towards other agents. In our framework, the AI agent’s assistive actions

towards the human fall under this category. In some of the more recent works [33; 75]

the emphasis has been on learning the human’s goal first by performing information

gathering actions and following those with assistive actions towards the goal. We build

on these works by assuming the human’s goal is known beforehand and emphasize

on how the agent can ensure the communication of its proactive assistance. Further,

work by [100] delineates desired properties like pertinence, competency, etc., of a

proactive assistant and proposes an operational framework. Our concrete guidelines

can be traced back to these general guidelines. Other works [46; 95] have studied in

a collaborative setting with predefined roles for agents, whether an agent should help

others or not. In our case, the agent stops itself from assisting proactively only when

the assistance puts the human in a worse-off situation.

More recently, the idea of planning for stigmergic collaboration in human-agent

cohabitation scenarios [13; 10] has been explored. However, in these works, the agent

does not reason over human’s awareness of the assistance, in addition human’s partial

observability of the agent’s actions is not considered. Further, unlike some decision

support systems [85] that tend to be proactively assistive at planning time by provid-

ing plan suggestions, our system provides proactive task assistance at execution time.

157

Assistance at execution time has additional challenges of managing human’s observ-

ability. Besides managing human’s observability, sometimes it might be necessary

to manage her attention. For instance, despite the agent’s attempt at making the

human aware of the assistance, she may voluntarily or involuntarily be inattentive,

thereby invalidating agent’s efforts. This aspect of attention management [45] has

been studied in the literature. However, we do not consider the problem of human’s

attention management here. Lastly, here we borrow the notion of controlled observ-

ability from the earlier chapters [59; 60]. However, we show in the upcoming sections

that both legibility and obfuscation can be used to communicate assistance.

8.2 ma-copp

We consider two actors R (say, a robot) and H (say, a human). The objective of R

is to proactively provide task level assistance to H at execution time. As mentioned

before, by using H’s decision algorithm as an input to our system, we can simulate

H’s plans.

In our setting, R is aware of the both its own model and H’s model. Whereas, H

is only aware of its own model. Both the agents have full observability of their own

activities. However, they both have partial observability of certain actions performed

by the other agent. R is also aware of H’s perception limitations of its actions 1

and is capable of choosing among multiple actions to modulate H’s observability of

its actions. We call this framework as multi-agent controlled observability planning

problem (or ma-copp).

Definition 38. A multi-agent controlled observability planning problem is a

tuple, ma-copp = 〈MH,DR,ΩH,OH〉,
1We consider a single-interaction assistive setting and therefore do not model R’s partial observ-

ability of H’s actions.

158

• MH = 〈F ,AH,B0, G
H, cH〉 is H’s planning problem. B0 is its initial belief,

which is a set of states inclusive of actual initial state I.

• DR = 〈F ,AR, I, cR〉 is R’s action model. R has full observability of its actions

and states.

• ΩH is the set of observation symbols received by H, when it acts or when R

acts.

• OH : AR ∪ AH × S → ΩH is H’s observation function. Further, ∃a, a′ ∈

AR, s, s′ ∈ S, a 6= a′ ∧ s 6= s′ : OH(a, s) = OH(a′, s′), i.e., OH gives coarse-

grained observations for at least some actions of R, making some of R’s actions

seem indistinguishable.

From the definition of ma-copp, we can see that although both the agents have

independent action models, action costs, they share the same state space. Moreover,

H’s initial belief consists of R’s initial state. To select a specific behavior that modu-

lates H’s information in the environment, R requires access to H’s prior knowledge,

its perception limitations as well as its task. In the running example, this involves

modeling the fact that the human does not know the location of the items, as well

as that she cannot see the actions performed in other rooms, and that her goal is to

find a medkit on that floor.

In ma-copp, R executes an assistive behavior from the initial state followed by

H’s execution from the updated belief towards its goal. For instance, in the running

example, the robot displays the wagon and leaves it in room E followed by the human

commander’s execution of her plan. Due to H’s partial observability of R’s actions,

it operates in a belief space. For instance, the human didn’t know the contents of the

wagon before they are displayed. In solving ma-copp, the challenge lies in choosing

159

the right amount of information to reveal to H. R can select actions that reveal

the missing information to H. It can also select actions that hide away unnecessary

complexities from H. Therefore, in solving ma-copp, R has to carefully choose what

information to reveal versus what to hide from H.

8.2.1 Robot Modeling of Human’s Belief Update

After an action a ∈ AR∪AH changes the current state of world resulting in a new

state s ∈ S, R simulates H’s belief update by using the observation OH(a, s) emitted

by H’s sensor model. The definition of H’s sensor model also allows for actions with

null observations. That is, a dummy observation, ω∅ ∈ ΩH, that makes all R’s 〈a, s〉

pairs seem indistinguishable, where a ∈ AR, s ∈ S. At any time step, t ∈ {1, . . . , T },

throughout the joint execution, Bt, which is a set of states represents H’s belief. Here,

T is the last time step of the joint execution. If |Bt| = 1, then H has full observability

of the state at time step t. The belief update is defined as follows: (1) at time step

t = 0, B0 = {s | ∃s ∈ S, s = I}, (2) at time step t ∈ {1, . . . , T }, let ωH
t ∈ ΩH \ω∅ be

the observation received by H, then Bt = {s′ | ∃s ∈ Bt−1, a ∈ AR ∪ AH : Γ(a, s) |=

s′∧OH(a, s′) = ωH
t }. If ωH

t = ω∅ then Bt = Bt−1. This is because practically the null

observation does not reveal any new information in H’s belief update. H starts its

execution from an intermediate belief state. Let t = k be an intermediate time step

and Bk be H’s starting belief for its execution. R maintains H’s belief state from

initial belief until t = k.

8.2.2 Formal Guidelines for a Proactive Assistant

An implicit objective of R is to ensure that H’s cost of achieving its goal is

less than that of achieving its goal by itself. We can formalize this intuition about

loss/gain in terms of cost experienced by H when it participates in a joint execution

160

by using the notion of cost differential. Given a joint plan, πma-copp, that solves

a planning problem for the goal, GH, let CH∆ (πma-copp) represent the cost differential

between the cost incurred by H when πma-copp is executed, versus the minimum cost it

incurs when it achieves the goal by itself, i.e., CH∆ (πma-copp) = cH(πma-copp)− cH(π∗H).

For H to participate in an assistive joint plan with R, it only makes sense if and

only if the assistance provides a reduction in her total cost. Otherwise, H may be

better off executing its own plan to its goal. Therefore, for R to be an assistive

agent, the first constraint is to ensure that it only produces a joint plan where the

assistance decreases H’s minimum cost (given by H’ decision algorithm). That is,

for a joint plan πma-copp, CH∆ (πma-copp) < 0. In addition, R should keep track of the

belief updates that H may go through before the start of its execution phase. Given

that, R is aware of H’s sensor model, by simulating the belief it can choose its actions

to either limit or increase the amount of information being shared with H. R can

achieve this in multiple ways: (1) by either making certain part of the current state

legible (collapsing the states in H’s belief) to reveal particular information to H,

or (2) by obfuscating the current state completely thereby keeping some unnecessary

complexities hidden fromH’s belief. This belief modulation allowsH to participate in

the joint plan. As without any awareness about the assistance, H may tend to follow

her original plan. Thus by controlling H’s observability, R can not only assist H but

also guide it towards a cheaper plan to GH. As a result of this belief modulation,

H’s planning problem gets modified toMH
k = 〈F ,AH,Bk, GH, cH〉. Let πMH

k
be an

minimum cost plan (as per H’ decision algorithm) for this modified problem, then

cH(πMH
k

) = CH∆ (πma-copp). Therefore, the second constraint for R is that, H should

be aware of the reduction in its cost in the modified planning problem.

Finally, the overall effort needed from H’s end to participate in πma-copp should be

minimized while accounting for both the prior constraints. This is important because,

161

even though H only starts executing after R, H’s active involvement in the joint plan

itself starts from the beginning of the plan. This involves the additional overhead

experienced by H in updating its belief as a result of R’s actions. This penalty

incurred by H can be formulated in different ways (for e.g., the cost associated with

belief update during R’s execution, etc). We approximate this penalty as the overall

length (time steps) of R’s part of the joint execution 2 in addition to H’s execution

cost. Let L be the maximum cost that H is willing to accommodate in first part of

the joint execution, i.e., k < L. Therefore, a proactive assistant optimizes:

min α k + (1− α) CH∆ (πma-copp) (8.1)

subject to CH∆ (πma-copp) < 0 (8.2)

cH(πMH
k

) = CH∆ (πma-copp) (8.3)

k < L (8.4)

where α is a parameter. By setting α appropriately, we can choose joint plans

that H may prefer in terms effort required.

8.3 Solution Methodology

Although, the overall objective here is to find a joint plan that satisfies equation

8.1, we can only synthesize behavior of the autonomous agent, R. We assume that H

is an independent agent capable of planning towards its own goal. Given that H has

partial observability of some of the actions performed by R and operates in a belief

space, we assume that H is capable of computing a conformant plan [43; 76] from

the belief at the beginning of its execution phase. A conformant plan solves the task

by accounting for the relevant uncertainties and does not rely upon being able to get

further information from R.
2Instead of using the entire length of R’s part of the joint plan, we can choose to use only the

length of observable time steps, i.e. we can choose to ignore the time steps with null observations.

162

Therefore, a solution to equation 8.1 involves finding a plan for R from the initial

state to a desirable belief state, Bk considering the best response of H at time step

k. Practically, this is a nested search process, where in the outer search loop, the

algorithm searches for a desirable belief state by performing a sequence of actions

consistent with R’s action model. While in the inner search loop (marking the start of

phase 2), the algorithm searches for satisfaction of the goal by performing a sequence

of actions consistent with H’s action model. However, since H operates in a belief

space, for each node we need to maintain H’s belief consistent with that node. And

this nested search is essentially a search over a belief space that not only achieves the

goal, but also reaches an intermediate partially legible or obfuscatory belief. Since

it is not known beforehand, what a desirable belief state would look like for a given

problem, it is not that straightforward to design a goal-directed heuristic function

to expand the search space. Instead, we use Monte Carlo tree search (MCTS) as a

possible way of quickly sampling states and building a utility based tree by performing

simulations using a conformant planner for the inner search loop. Once we have access

to such a tree, we can then perform search on it by expanding only the high utility

search nodes in the tree.

In our approach, we only synthesize for a single agent in a serialized manner.

Therefore, there is no need to wait for the moves of the second actor and we can

use a single-player version of MCTS [84]. By running numerous quick simulations on

the solution space, we can build a sufficiently good utility tree starting from initial

state of R. The single player MCTS approach for constructing the utility tree is

outlined in Algorithm 8. For n iterations, the selection of nodes to be expanded in

the tree is done using UCT (upper confidence bound 1 applied to trees) given by
node−utility
node−visits+ε + C ∗

√
ln elapsed−iterations

node−visits [55]. The depth of the tree is expanded until

R’s budget L (from Equation 8.4) runs out. For each of the expanded nodes, we

163

Algorithm 8 Generation of utility tree
1: Input: ma-copp, cH(π∗H), L, m (number of iterations)

2: Output: tree (utility tree)

3: tree← node(I,B0, utility = 0)

4: for m iterations do

5: /* select a leaf node using UCT to evaluate nodes */

6: node, tnode = select(tree)

7: /* expand a child node */

8: child, tchild = expand(node, tnode)

9: if tchild < L then

10: /* create conformant planning problem */

11: πH = planner(child.Bt)

12: /* simulate using conformant plan */

13: if πH 6= ∅ & cH(πH) < cH(π∗H) & bπHT |= GH then

14: reward = β

15: cost = α tchild + (1− α) cH(πH)

16: else

17: reward = 0

18: cost = φ

19: end if

20: /* Backpropagate reward and cost */

21: backpropagate(child, reward− cost ∗ ε)

22: end if

23: end for

simulate using a conformant plan generated from node’s belief to solve GH. The

satisfaction of the goal and the length of the plan, determines the overall reward to

164

be backpropagated.

The utility tree thus constructed is then used to compute the actual joint plan. In

this utility tree, we can consider n best children for each node (i.e. nodes with higher

utility and/or higher number of visits). This helps in reducing the solution space with

paths that have now been sampled to ensure the satisfaction of all the constraints

listed out in equations 8.2 through 8.4. On this reduced search space, we can now

perform a simple search to find a node that minimizes the equation 8.1 as well as

satisfies the goal. The path to the best such node is then the part of the joint plan

that is executed by R. This secondary search on the utility tree is only to ensure that

the solution minimizes the equation 8.1. Additionally, n can be increased to ensure

completeness. Depending on the number of iterations m of MCTS, the value of n can

be modulated.

8.4 Evaluation

We conducted a user study to validate the underlying hypothesis of our framework,

that the human only recognizes the reduction in her own cost to the goal when the

agent takes into account the human’s awareness of the assistance. For the user study,

we use urban search and rescue (USAR) domain presented in the running example.

We also perform an empirical evaluation to analyze the performance of our approach

using USAR domain and modified IPC Driverlog domain.

Domain Setup

Both the Driverlog domain and USAR domains were written in PDDL (Planning

Domain Definition Language) [71]. For both Driverlog and USAR, we create two

versions of the domain: for R and H respectively. R’s version consists of actions that

are partially observable as well as non-observable to H. Further, for each action, there

165

are two action definitions in the domain: one to capture R’s state transition with full

observability as well as the other annotated with keyword “belief" to perform the

corresponding belief update for H. A parser is used to apply either the belief version

of the action (for actions without full observability to H) or the regular version of the

action (for actions with full observability to H). In the “belief" version of the actions,

to represent uncertainty over some fluents, we use the standard semantics used in

conformant planning benchmarks like “unknown", “oneof" clause to mark a fluent as

uncertain. For H’s version of the domain, some action definitions that depend on

uncertain fluents have conditional effects, written using the standard “when" clause

consisting of the condition followed by the effect.

In the Driverlog domain, each domain version is associated with a different

driver representing R and H. In this domain, the goal of the drivers is to deliver

packages from one city to another. The set of actions available to R consist of

stamping-packages-same, stamping-packages-different, load-truck-same-package, load-

truck-different-package, unload-truck-same-package, unload-truck-different-package, board-

truck, disembark-truck, drive-truck, walk. Here the first two actions are directly mod-

ulating H’s observability of packages. If R stamps the packages the same, H cannot

tell the difference between them and has to consider all the packages. While if they

are stamped differently, H can identify the individual packages. Here depending on

the goals of the two agents and on the amount of information R wants to convey, it

will accordingly choose the stamping actions. The first 6 actions listed above have a

“belief" version of the action definition to model H’s belief update corresponding to

those actions. In H’s version of the domain, except the stamping actions, all the other

actions listed above are available. Out of these the first 4 actions have conditional

effects.

In the USAR domain, each domain version is associated with a different agent repre-

166

senting R and H. In this domain, the agents’ objective is to collect items like medkit,

fire extinguisher, etc. from various rooms on the floor. The set of actions avail-

able to R include room-cleared, display-wagon-item, move-to-room-wagon-displayed-

singleroom, move-to-room-wagon-displayed-connectedroom, move-to-room, move-to-

room-wagon, move-to-room-wagon-empty, add-item-wagon, remove-item-wagon, carry-

wagon, leave-wagon. Here, the first two actions modulate which rooms H will visit.

If clear room action is performed then H will not visit those rooms since those rooms

have been declared empty. If display action is performed then H will visit the sin-

gle/connected rooms that R visits after displaying the wagon items. The next action

– moving displayed wagon to single room – has full observability, whereas the next

action associated with moving the wagon to a connected room has partial observabil-

ity, i.e., the wagon can be any of the connected rooms. The rest of the actions have a

full observable versus completely non-observable versions – when the human and the

agent are in the same room, all of these actions become fully observable otherwise

they are not observable. The first four actions have “belief" version of the action

definition to model H’s belief update corresponding to those actions. In H’s version

of the domain, there are no wagon related actions, the human can move between the

rooms and can pick up and drop from a room and from a wagon. Out of these, the

picking up and drop actions have conditional effects.

8.4.1 Empirical Evaluation

We use the approach discussed in Section 3 to generate solutions. We use Conform-

ant-FF planner 3 [42] to simulate H’s plans given a belief state. For both the

domains, we kept L = 15, i.e., maximum length of R’s part of the joint plan. We

ran our experiments on 3.5 GHz Intel Core i7 processor with 16 GB RAM. In Table
3Source code for Conformant-FF: https://fai.cs.uni-saarland.de/hoffmann/cff.html

167

https://fai.cs.uni-saarland.de/hoffmann/cff.html

(a) (b)

(c)

Figure 8.2: Illustration of Assistive Plan Used in First User Study. The Goal of

the Human Commander Is to Find a Medkit. She Does Not Know What Items Are

Present in Each Room (Indicated by Blue Regions) (a) the Robot Goes into Room

B, (b) Comes out with a Wagon and Shows Her the Items of the Wagon. It Then

Proceeds to Room E, (c) Comes out Without the Wagon and Exits the Floor.

168

(a) (b)

(c)

Figure 8.3: Illustration of Assistive Plan Used in the Second User Study. Human’s

Goal Is to Find All the Medkits. She Does Not Know What Items Are Present in

Each Room (Indicated by Blue Regions) (a) the Robot Goes into Room B, (b) Comes

out with a Wagon and Declares All Rooms a, B, C, D Are Empty. It Then Proceeds

to Room E, (c) Comes out and Exits the Floor with the Wagon.

169

Domain # cH(π∗H)
α = 0.2 α = 0.8

m
Time

cH(πma-copp) % decrease |πma-copp| cH(πma-copp) % decrease |πma-copp| (sec)

Driverlog

1 7 3 57.14 8 4 42.85 6 7000 155

2 8 5 37.5 11 5 37.5 7 7000 171

3 9 3 66.67 9 4 55.55 7 7000 165

USAR

1 15 3 80 14 5 66.67 8 11000 257

2 15 4 73.33 12 7 53.33 10 11000 240

3 12 4 66.67 13 4 66.67 7 11000 254

Table 8.1: Empirical Evaluation Results for Two Domains with for Different α Values

(Shows Human Prioritizing Between Processing Load Vs Task Load).

8.1, we report for each problem H’s optimal cost without any assistance from R,

H’s cost from participation in joint plan, percentage decrease in H’s cost, length of

the joint plan, number of iterations used to construct the utility tree and the time

taken to generate the solutions. By setting α parameter, we can see how the joint

plans prioritize task load vs processing load. We varied n best children from 1 to

5 during the search but the solutions were not impacted thus indicating that the

optimal solutions had been found for those problems for n = 1. As shown in the

table, a steep percentage decrease is obtained for both the domains (specifically for

USAR). Additionally, the joint plan itself is not too long even when R is assisting.

This is because R has more information and is capable of guiding H in a way that

reduces H’s cost.

8.4.2 User Study

We conducted two user studies each with a within-subject design to validate the

underlying hypothesis. The participants for the studies were recruited from Amazon

Mechanical Turk [24]. For each study, we collected 34 submissions. For the first user

170

study after filtering, we had 31 submissions, and for the second we had 27 submissions.

Each participant was paid at the rate of $15/hour for 10 minutes.

Hypothesis 1a Without legible (revealing information) actions, H is not aware of

the assistance provided by R.

Hypothesis 1b Both legible (revealing information) and obfuscating (hiding infor-

mation) actions allow H to experience reduction in task load and processing load.

Figure 8.4: Results for Hypothesis 1a. The Four Colors Stand for 4 Options in

Questions (3) and (4). Here PA Refers to Proactive Assistant, and 1 and 2 Denote

the User Study Numbers.

The format of our studies was as follows: the subjects read through the rules of

the USAR domain. Then they were shown two scenarios one after another illustrating

the robot’s behavior. After seeing each scenario they were asked how they would

171

solve their task. This was also the filter question to make sure they understood

the scenario. The submissions which passed the filtering were used to calculate the

results. The two scenarios were different in only one action. One scenario satisfied

Equation 8.3, the other did not. For USAR, the scenarios that satisfy Equation 8.3

have been discussed in Table 8.1. The order of the scenarios was flipped for half

of the participants to account for sequential bias. In user study 1, Figure 8.2 with

and without the display action (action number 3 in Figure 8.2b) was shown, while

in user study 2, they were shown the illustration in Figure 8.3 with and without the

explanation that the rooms are cleared (action number 3 in Figure 8.3b). After the

filter question, they were asked to answer a survey: (1) rate the scenarios in terms

of workload (2) rate the scenarios in terms of the effort needed to come up with a

plan (3) what they thought the robot was doing scenario 1 (4) same for scenario 2.

For questions (1) and (2), they had to rate the scenarios on a 7 point Likert scale

“1 – very hard" to “7 – very easy". For questions (3) and (4), they were given the

following 4 options - (a) working on its task (b) assisting them (c) working on its

task and assisting them (d) cannot say.

For the first user study, we used the illustration similar to Figure 8.1. This is the

same problem as the one explained in the running example, except the participants

were not aware of the actions performed by the robot within the rooms as shown in

Figure 8.2. In this scenario, the robot’s behavior hides unnecessary details like initial

location of the kit from the human, but important details like final location of medkit

are revealed. While for the second user study, we used the illustration in Figure 8.3.

Here the human’s goal is to find all the medkits on the floor. In this case, the robot

while picking up items necessary for its goal, also picks up the medkits in rooms A

and B (recall that the robot knows the item locations). Further, it reveals to the

human that rooms A to D are empty. The robot then drops one medkit in room E

172

and takes the other medkit by itself. Thereby, hiding complexities like existence of

multiple medkits, their initial locations, while revealing information that rooms A to

D are empty allowing the human to deduce that the medkits (if any) would be in

room E.

In hypothesis 1a, our aim is to check whether the legible actions allow the robot

to ensure human’s awareness of the assistance. From results of questions (3) and (4)

shown in Figure 8.4, we can see that for the baseline behaviors, only 6 (combining

both options (b) and (c) referring to assistive behavior) out of 31 participants and

6 out of 27 participants attributed assistive behavior to the robot in study 1 and 2

respectively. In contrast, for behaviors with one extra legible action, 25 out of 31

participants and 24 out of 27 participants attributed assistive behavior to the robot

in study 1 and 2 respectively. Since the only difference between the two scenarios is

a single legible action, the results confirm our hypothesis that legible actions make H

aware of R’s assistance.

In hypothesis 1b, our aim is to check whether the assistance provided by R allows

H to experience potential reduction in task load and the overhead of processing robot’s

behavior and coming with a plan to solve the task. For first study, the average score

for workload for the baseline behavior was 3.22 (recall that 1 denotes “very hard")

in contrast to that of 5.96 for PA (proactive assistant), with a statistical significance

(p-value = 0.0000001, p-value < 0.05) obtained by running a two tailed paired t-

test, an effect size of 1.89 by running Cohen’s d test. While the average score for

processing robot’s behavior was 3.45 for baseline and 6.06 for PA, with a p-value

< 0.05 and effect size of 1.62. For second study, the average score for workload was

2.74 for baseline in contrast to that of 5.55 for PA, with a p-value < 0.05 and effect

size of 1.95. The average score for processing robot’s behavior was 3.55 for baseline

in contrast to 5.85 for PA, with a p-value < 0.05 and effect size of 1.67. All effect

173

sizes suggest each of the two conditions differ by a large standard deviation. This

confirms our hypothesis that the legible and obfuscating actions reduce the overall

task and processing load by hiding unnecessary complexities and revealing necessary

information.

8.5 Concluding Remarks

In this chapter, we discussed the behavior synthesis of a proactive assistant. While

providing proactive assistance, the robot has to ensure that the human is aware of how

the assistance affects her task, since the human may not be expecting to receive the

assistance in the first place. We presented the multi-agent controlled observability

planning (ma-copp) framework to formulate this problem of proactive assistance.

The robot modulates the human’s belief to convey the potential reduction in human’s

cost. We presented a Monte Carlo tree search based solution approach to synthesize

this behavior, which samples partial joint plans to construct a utility tree that can

be used to optimize the robot’s objective of proactive assistance. We validated the

underlying hypotheses through user studies and performed empirical evaluation to

analyze the performance of our approach.

174

Chapter 9

CONCLUSION

In the chapters so far, we have seen how the robot can leverage its understanding

of the human’s mental model to exhibit suitable behaviors either to conform to the

human’s model, or to communicate information to the human, or to hide information

from an adversary. In this chapter, we will conclude our discussion on the synthesis

of various interpretable as well as obfuscatory behaviors available to a robot. First,

we will summarize the problems this thesis addresses and the approaches presented

to solve them. Second, we will reflect on some aspects of the approaches presented as

well as point out some avenues for future work. Third, we will highlight key takeaways

from this thesis.

9.1 Summary

In this thesis, we have seen that the observer’s mental model of the robot model

may be different from the robot’s actual model either in terms of robot’s task, its

actions or observability of its actions. And these differences result in confusion over

the robot’s behavior, or uncertainty about its objectives and intentions. The robot

can choose to avoid the confusion as well as limit the uncertainty for its teammates

or it can choose to further propel the uncertainty for its enemies. Therefore broadly

its behavior can be classified into interpretable and obfuscatory behaviors as seen

throughout the previous chapters. We will now summarize each of these behaviors

and the approaches used to synthesize them.

In Chapter 3, we discussed the synthesis of explicable plans. An explicable plan

allows the robot to minimize the distance between its plan and the human’s expecta-

175

tions of its plan. We discussed two approaches to generate explicable plans: model-

based and model-free. The model-based approach uses the human mental model as

an input. In this approach, a mapping between the expected plans (i.e., the optimal

plans in the human’s mental model) and the robot plans is learned using a regression

function. To learn such a mapping, explicability scores of the candidate robot plans

are collected. Then a set of plan distances between a candidate robot plan and an

expected plan are mapped to the explicability score of the candidate plan. Once the

regression function is learned, given a distance between a robot plan and an expected

plan, the function outputs its explicability score. This regression function is used as a

heuristic to guide the explicable plan generation process. In the model-free approach,

an explicit human mental model is not required. Instead a conditional random field

(CRF) based model is used to capture the underlying patterns which characterize the

explicable behaviors for that domain. This model is trained using candidate robot

plans labeled by users to indicate explicable and inexplicable parts. Once this model

is learned, it can be used to label a given sequence indicating its explicable and non-

explicable parts. This learned model is then used as a heuristic to guide the explicable

plan generation process. We demonstrated the effectiveness of these approaches in

both simulated domains as well as physical robot domains by performing user studies.

In Chapter 4, we discussed legible behaviors that allow the robot to communicate

information about its goals (i.e., goal-legible behaviors) and plans (i.e., plan legible

behaviors), when the human has partial observability of the robot’s activities. By tak-

ing the observer’s sensor model into account the robot can communicate the necessary

information. Here we saw the controlled observability planning (COPP) framework

that models the underlying general problem setting. We discussed a general algorithm

template that can be used to solve a COPP problem variant. We also discussed the

connection between plan legible behaviors and predictable behaviors. We performed

176

an empirical analysis using IPC domains to evaluate the performance of the two

COPP variants as well as to understand the impact of an algorithm parameter on the

solution coverage for goal legibility.

In Chapter 5, we discussed an environment design approach that facilitates expli-

cable behavior in environments, which may not be well-suited for it. The environ-

ment design for explicability framework selects environment modifications that are

optimized for explicable robot behaviors for a given set of tasks that are performed

by the robot over a time horizon. In this setting, there is a longitudinal impact on the

explicable behaviors since the robot may perform a task repeatedly over a time hori-

zon. We capture it using a discounted Markov reward process. We solve the problem

of design for explicability by performing a meta-search in the space of environment

configurations, and provide a compilation to classical planning for node evaluation

given a cost-based inexplicability score. The compilation solves the problem of gener-

ating the most explicable plan in a given environment. We perform empirical analysis

over three IPC domains to show (1) improvement of explicability score resulting from

environment redesign on problem instances, (2) impact of the design objective pa-

rameters on the number of design modifications chosen in the solutions. We also

briefly discussed the problem of environment design for communicative behaviors like

legibility and predictability and saw that the goal recognition design as well as plan

recognition design fall out as special cases of the design problems for legibility and

predictability.

In Chapter 6, we discussed different types of obfuscatory behaviors that allow

the robot to hide information about its goals (i.e. goal obfuscation) and plans (i.e.

plan obfuscation). We discussed an approach to synthesize secure goal obfuscation

which maintains obfuscation even when the algorithm is queried with different goal

inputs. All of these obfuscatory behaviors are also COPP problem variants. We

177

evaluated the performance of different goal obfuscation approaches as well as that of

different COPP problem variants, and we also analyzed the impact of an algorithm

parameter on the solution coverage for goal obfuscation. We also saw the problem

of resource bounded goal obfuscation, which allows the robot to ensure that the goal

obfuscation is secure and is not biased by any of the decoy goals. We discussed a

solution approach to solve this problem which involved choosing appropriate list of

decoy goals that have higher similarity to the robot’s true goal. Then we used these

goals to generate a non-biased secure goal obfuscatory plan by computing equidistant

states and bounded-length belief plans to these states. We also performed empirical

evaluations using IPC domains to analyze the performance of this approach.

In Chapter 7, we discussed the mo-copp formulation which is a more general

version of the controlled observability planning framework since it supports both

adversarial as well as cooperative observers simultaneously. We saw two solution

approaches to solve mo-copp: (1) we formulated the problem as a constraint opti-

mization problem and showed that the mo-copp can be solved optimally given the

time horizon, (2) we showed that it is possible to leverage COPP framework that

tackles obfuscation and legibility in isolation to compute satisficing solutions for mo-

copp. We evaluated both of the approaches using 6 domains in total to show the

feasibility and utility of the solution approaches.

In Chapter 8, we discussed the problem of proactive assistance, that is a setting

where the robot is capable of proactively assisting a human on her task. We showed

that the robot can reason over the human’s awareness of the assistance by modulating

her belief states to reveal necessary information and hide irrelevant information about

her goal. Specifically, we presented a set of guidelines that allow the robot to play

the role of a proactive assistant : (1) its activity decreases the human’s cost towards

her own goal (2) the human is able to recognize the potential reduction in her cost

178

(3) its activity optimizes human’s overall cost towards her goal. We then discussed a

solution approach for quickly sampling partial joint plans and constructing a utility

tree to synthesize desired assistive behaviors. Through user studies and empirical

evaluations we validated the underlying hypotheses and analyzed the performance of

the algorithm.

9.2 Discussion and Future Work

We will now look at some of the relevant works that were not fully captured in

this thesis. We will also remark on several aspects of the presented work that open

up avenues for future directions.

9.2.1 Landscape of Robot Behaviors

In a recent survey paper [14] on various interpretable and obfuscatory behaviors,

we presented a coherent taxonomy for different robot behaviors. This work was not

fully described in this thesis, however it is quite central to the theme of this thesis.

The recent research in the area of human-aware AI has typically lacked coherence

on the terminologies used to discuss different types of behaviors. A quick scan of

the existing literature reveals algorithms for “explicable”, “legible”, “predictable” and

“transparent” planning with overlapping, and sometimes conflicting semantics. The

same can be said of a parallel thread of work on the “deception”, “privacy” and “se-

curity” of plans. This work attempts to provide some clarity and guidance to future

researchers looking to work on the topic. In this work, we compared and contrasted

existing literature and provided a unified framework for precise specification of these

(often confused) ideas. We categorized the interpretable behaviors explored by the

research community into three main categories namely: explicability, legibility (or

transparency) and predictability. Similarly, we also categorized obfuscatory behav-

179

iors into four main categories namely: goal obfuscation (or disssimulation, or privacy),

deception (or simulation), plan obfuscation, and security. We also highlighted gaps

in existing work and directions for future research.

9.2.2 Legibility via Projection-Aware Planning

In this work [18], we explored the use of hologram projections for effective commu-

nication of the robot’s objectives and intentions during an online interaction between

a human and a robot. We showed that, by projecting its intentions as holograms (e.g.

by projecting a pickup symbol on a tool that it might use in future), the robot can

reduce ambiguity over the possible plans (i.e. projections improve the plan legibil-

ity). Further, unlike in traditional mixed reality projection systems, the human can

directly interact with these holograms to make her own intentions known to the robot,

(e.g. by gazing at and selecting the desired tool thus forcing the robot to replan).

Further, we showed that such considerations are not confined to the plan execution

phase alone, but can also guide the plan generation process itself by searching for

plans that are easier to communicate: i.e. instead of considering only cost optimal

plans, the robot can choose plans which are easier to explicate using intention pro-

jection actions. We demonstrated the effectiveness of our approach using a physical

robot solving a block stacking domain.

9.2.3 Future Directions for Environment Design For Explicability

The environment design framework for explicability presented in Chapter 5 as-

sumes that the robot is capable of performing explicable behavior. However, we can

also consider the problem of environment design for explicability when the robot is

rational but not cooperative (i.e. it can only generate cost-optimal plans in the given

environment and cannot bear the overhead cost of being explicable). In this case, the

180

emphasis will be on choosing a set of design modifications which reduce the worst

case inexplicability score associated with cost-optimal plans for a task. Similarly, we

can also consider the problem of environment design for explicability when the robot

can communicate (i.e. it can provide an explanation in conjunction with being able

to bear the overhead cost of being explicable). In settings involving different humans,

the robot will have to provide the same explanation over and over to make its be-

havior explicable. Therefore, we again see similar trade-offs between one-time design

cost versus the cost of repeated explanations borne by the robot. This would require

modeling the impact of longitudinal interactions on explanations to account for how

the human will update their mental model each time they receive an explanation.

9.2.4 Generalizing mo-copp Framework

The mo-copp framework presented in Chapter 6 focused on settings with a single

adversarial and a single cooperative observer. However, the mo-copp formulation

can be easily generalized to address multiple observers of adversarial type and coop-

erative type. One way to compute the goal difference, GD, with respect to multiple

adversarial and cooperative observers would be to average over the goals achieved

for each type of observer and compute the goal difference with respect to the av-

erages. Both the solution approaches are general enough to handle it. In the first

approach involving integer programming, the objective function will optimize the av-

erage over goals for each type of observer. While in the second approach involving

heuristic search, each search node will be required to maintain the beliefs of each

corresponding observer.

181

9.2.5 Generalizing ma-copp Framework

The ma-copp framework described in Chapter 8, Definition 38, can be extended

to include the robot’s separate planning problem as well (i.e. a separate goal for the

robot, say GR). With this inclusion, the framework becomes quite general and is

no longer restricted to assistive planning problem. In fact, it can be used to model

cooperative settings like (1) collaborative settings where both the human and robot

are working on separate goals that require collaboration as well as non-cooperative

settings, like (2) exploitative settings where the robot represents a self-interested

agent who wants to reduce its own cost at the expense of the other agent, or (3)

adversarial settings where the other agent represents an adversarial entity whose

task the robot wants to sabotage. In the collaborative setting, the robot has the

objective of minimizing both its optimal cost to its own goal as well as the teammate’s

optimal cost to her goal by finding a joint collaborative plan that involves guiding

the human by modulating her beliefs. In the exploitative setting, the robot’s implicit

objective is to coerce the other agent to work on the robot’s task by withholding

some information and deliberately forcing the other agent to reduce robot’s cost to

the goal. On the other hand, in adversarial setting, the robot’s implicit objective is to

maximize adversary’s cost to goal by modulating adversary’s beliefs, even if it comes

at an additional cost to the robot. This could be used to model purely adversarial

scenarios where the robot may prefer costly punishment [80; 41] over no punishment.

9.2.6 Assumptions used in the Problem Settings

We will now briefly discuss some of the implicit assumptions of all the different

frameworks discussed in this thesis. Firstly, in all of the discussed frameworks, since

the robot’s behavior is being observed by the human-in-the-loop, we assume that the

182

robot is capable of taking into account the human’s mental model of itself (which

may also involve taking into account human’s sensor model). Further, in most of

the frameworks (i.e., apart from the ma-copp framework discussed in Chapter 8), we

assume that the human is simply observing the robot with the intent of understanding

the robot’s behavior, that is, she is observing the robot’s behavior without an explicit

goal of her own in mind.

In Chapters 3 and 5, we discussed a framework for explicable planning. In this

framework, we assume that a human’s mental model as well as a distance function

is available and/or can be retrieved in some form. However in some of the domains,

only partial mental models may be retrievable. Further, different humans in the en-

vironment may have competing expectations leading to inconsistent mental models.

In these cases, explicable behavior may not be feasible. However explicit communi-

cation (in terms of explanations, signaling through projections, interactions in the

form question-answers) can be used by the robot to reconcile incomplete models or

competing differences in mental models.

In Chapters 4, 6, 7 and 8, we discussed different versions of the controlled observ-

ability planning framework. In all of these frameworks, we assumed that the robot

has access to the observer’s sensor model, and that the observer is capable of up-

dating her beliefs accordingly. If the observer has limited computational capability

which prohibits her from updating her beliefs accurately, then the robot will have

to account for such computational limitations as well (for instance, allowing belief

states of limited size to make it easier for the human to update her belief). Also, we

assume a simpler form of observer sensor model that can map the robot’s activities

to deterministic observations. But there may be settings that require modeling of

non-deterministic or stochastic sensor models as well. Further, in Chapter 7, unless

the cooperative and adversarial observers have different types of sensor models (say,

183

due to prior communication or due to inherent differences in observation modalities),

it is not possible to simultaneously obfuscate and be legible to different observers.

However, in the case where the observers receive the same type observations, if the

robot has the capability to explicitly modify the environment in a way that affects

their observability, then it can leverage environment design to simultaneously obfus-

cate and act legibly. Additionally, in Chapter 8, we assume that the robot is aware

of the human’s model of her task and also has access to her decision making process.

The latter assumption may require building a likelihood-based model that captures

the human’s most likely behavior given a belief state. Then this model can be used

to inform the robot’s assistive planning process.

9.3 Takeaways

The key takeaways of this thesis are as follows - (1) whenever the robot is acting

in the presence of observers, it should take their mental models (inclusive of sensor

models) into account. Based on whether the robot is operating in a cooperative or

adversarial environment, it should accordingly exhibit interpretable or obfuscatory

behaviors. (2) In cooperative environments, if the robot doesn’t want to commu-

nicate any information, it should act explicably. That is, it should conform to the

human’s mental model of itself. (3) In cooperative environments, if the robot wants

to communicate information about its model, it should perform legible behaviors (ei-

ther goal or plan legible). (4) The environment in which the robot and the human

are coexisting can be redesigned to facilitate interpretable behaviors - like explicable,

legible or predictable behaviors. (5) In cooperative environments, if the robot wants

to assist, it should ensure that the human is aware of the potential reduction in her

cost. (6) In adversarial environments, if the robot wants to hide information about

its model, it should perform obfuscatory behaviors (either goal or plan obfuscatory).

184

(7) In mixed environments with both cooperative as well as adversarial entities, the

robot should balance the amount of information shared with its teammates with the

amount of information shared with its adversaries.

185

REFERENCES

[1] Alkhazraji, Y., M. Frorath, M. Grützner, T. Liebetraut, M. Or-
tlieb, J. Seipp, T. Springenberg, P. Stahl and J. Wülfing, “Pyperplan”,
https://bitbucket.org/malte/pyperplan (2016).

[2] Bansal, G., B. Nushi, E. Kamar, W. S. Lasecki, D. S. Weld and E. Horvitz,
“Beyond accuracy: The role of mental models in human-ai team performance”,
in “Proceedings of the AAAI Conference on Human Computation and Crowd-
sourcing”, vol. 7, pp. 2–11 (2019).

[3] Bansal, G., B. Nushi, E. Kamar, D. S. Weld, W. S. Lasecki and E. Horvitz,
“Updates in human-ai teams: Understanding and addressing the perfor-
mance/compatibility tradeoff”, in “Proceedings of the AAAI Conference on Ar-
tificial Intelligence”, vol. 33, pp. 2429–2437 (2019).

[4] Bartlett, C. E. and N. J. Cooke, “Human-robot teaming in urban search and
rescue”, in “Proceedings of the Human Factors and Ergonomics Society Annual
Meeting”, vol. 59, pp. 250–254 (SAGE Publications Sage CA: Los Angeles, CA,
2015).

[5] Benton, J., D. Smith, J. Kaneshige, L. Keely and T. Stucky, “Chap-e: A plan
execution assistant for pilots”, in “Proceedings of the International Conference
on Automated Planning and Scheduling”, vol. 28 (2018).

[6] Bonet, B. and H. Geffner, “Belief tracking for planning with sensing: Width,
complexity and approximations”, Journal of Artificial Intelligence Research 50,
923–970 (2014).

[7] Bonisoli, A., A. E. Gerevini, A. Saetti and I. Serina, “A privacy-preserving
model for the multi-agent propositional planning problem”, in “Proceedings of
the Twenty-first European Conference on Artificial Intelligence”, pp. 973–974
(2014).

[8] Brafman, R. I., “A privacy preserving algorithm for multi-agent planning and
search.”, in “IJCAI”, pp. 1530–1536 (2015).

[9] Bryce, D., “Landmark-based plan distance measures for diverse planning.”, in
“ICAPS”, (2014).

[10] Buckingham, D. and M. Scheutz, “Getting help without asking: Stigmergic
planning for human-robot collaboration”, in “Proceedings of the AAMAS Work-
shop of Multi-Agent Interaction without Prior Coordination”, (2017), short pa-
per.

[11] Carberry, S., “Techniques for plan recognition”, User Modeling and User-
Adapted Interaction 11, 1-2, 31–48 (2001).

[12] Chakraborti, T., G. Briggs, K. Talamadupula, Y. Zhang, M. Scheutz, D. Smith
and S. Kambhampati, “Planning for serendipity”, in “IROS”, (2015).

186

[13] Chakraborti, T., G. Briggs, K. Talamadupula, Y. Zhang, M. Scheutz, D. Smith
and S. Kambhampati, “Planning for serendipity”, in “2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS)”, pp. 5300–5306
(IEEE, 2015).

[14] Chakraborti, T., A. Kulkarni, S. Sreedharan, D. Smith and S. Kambhampati,
“Explicability? Legibility? Predictability? Transparency? Privacy? Security?:
The Emerging Landscape of Interpretable Agent Behavior”, in “ICAPS”, (2019).

[15] Chakraborti, T., A. Kulkarni, S. Sreedharan, D. E. Smith and S. Kambhampati,
“Explicability? legibility? predictability? transparency? privacy? security?
the emerging landscape of interpretable agent behavior”, in “Proceedings of the
international conference on automated planning and scheduling”, vol. 29, pp.
86–96 (2019).

[16] Chakraborti, T., S. Sreedharan, S. Grover and S. Kambhampati, “Plan explana-
tions as model reconciliation – an empirical study”, in “2019 14th ACM/IEEE
International Conference on Human-Robot Interaction (HRI)”, pp. 258–266
(2019).

[17] Chakraborti, T., S. Sreedharan, A. Kulkarni and S. Kambhampati, “Alternative
modes of interaction in proximal human-in-the-loop operation of robots”, arXiv
preprint arXiv:1703.08930 (2017).

[18] Chakraborti, T., S. Sreedharan, A. Kulkarni and S. Kambhampati, “Projection-
aware task planning and execution for human-in-the-loop operation of robots
in a mixed-reality workspace”, in “2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)”, pp. 4476–4482 (IEEE, 2018).

[19] Chakraborti, T., S. Sreedharan, Y. Zhang and S. Kambhampati, “Plan expla-
nations as model reconciliation: Moving beyond explanation as soliloquy”, in
“IJCAI”, (2017).

[20] Chakraborti, T., Y. Zhang, D. E. Smith and S. Kambhampati, “Planning with
resource conflicts in human-robot cohabitation”, in “Proceedings of the 2016 In-
ternational Conference on Autonomous Agents & Multiagent Systems”, (2016).

[21] Christensen, H. I., T. Batzinger, K. Bekris, K. Bohringer, J. Bordogna, G. Brad-
ski, O. Brock, J. Burnstein, T. Fuhlbrigge, R. Eastman et al., “A Roadmap for
US Robotics: From Internet to Robotics”, Technical Report (2009).

[22] Cirillo, M., L. Karlsson and A. Saffiotti, “Human-aware task planning: An
application to mobile robots”, ACM Transactions on Intelligent Systems and
Technology (TIST) 1, 2, 15 (2010).

[23] Cohen, P. R., C. R. Perrault and J. F. Allen, “Beyond question answering”,
Strategies for natural language processing 245274 (1981).

[24] Crowston, K., “Amazon Mechanical Turk: A Research Tool for Organizations
and Information Systems Scholars”, in “Shaping the Future of ICT Research.
Methods and Approaches”, (Springer, 2012).

187

[25] Csibra, G. and G. Gergely, “ ‘obsessed with goals’: Functions and mechanisms
of teleological interpretation of actions in humans”, Acta psychologica 124, 1,
60–78 (2007).

[26] Dragan, A., K. Lee and S. Srinivasa, “Legibility and predictability of robot
motion”, in “Human-Robot Interaction”, (2013).

[27] Dragan, A. and S. Srinivasa, “Generating Legible Motion”, in “RSS”, (2013).

[28] Dragan, A. and S. Srinivasa, “Generating legible motion”, in “Proceedings of
Robotics: Science and Systems”, (Berlin, Germany, 2013).

[29] Dragan, A. D., S. Bauman, J. Forlizzi and S. S. Srinivasa, “Effects of robot
motion on human-robot collaboration”, in “2015 10th ACM/IEEE International
Conference on Human-Robot Interaction (HRI)”, pp. 51–58 (IEEE, 2015).

[30] Dragan, A. D., K. C. Lee and S. S. Srinivasa, “Legibility and Predictability of
Robot Motion”, in “HRI”, (2013).

[31] E-Martin, Y., M. D. R-Moreno and D. E. Smith, “A fast goal recognition tech-
nique based on interaction estimates”, in “Twenty-Fourth International Joint
Conference on Artificial Intelligence”, (2015).

[32] Fan, X., S. Oh, M. McNeese, J. Yen, H. Cuevas, L. Strater and M. R. Endsley,
“The influence of agent reliability on trust in human-agent collaboration”, in
“ECCE”, (2008).

[33] Fern, A., S. Natarajan, K. Judah and P. Tadepalli, “A decision-theoretic model
of assistance”, Journal of Artificial Intelligence Research 50, 71–104 (2014).

[34] Fisac, J. F., C. Liu, J. B. Hamrick, S. S. Sastry, J. K. Hedrick, T. L. Griffiths
and A. D. Dragan, “Generating Plans that Predict Themselves”, in “WAFR”,
(2018).

[35] Geffner, H. and B. Bonet, “A concise introduction to models and methods for
automated planning”, Synthesis Lectures on Artificial Intelligence and Machine
Learning 8, 1, 1–141 (2013).

[36] Geffner, H. and N. Lipovetzky, “Width and serialization of classical planning
problems”, (2012).

[37] Grosz, B. and S. Kraus, “Collaborative plans for complex group action”, Artifi-
cial Intelligence (1996).

[38] Gurobi Optimization, L., “Gurobi optimizer reference manual”, URL http://
www.gurobi.com (2018).

[39] Haslum, P. and P. Jonsson, “Some results on the complexity of planning with
incomplete information”, in “European Conference on Planning”, pp. 308–318
(Springer, 1999).

188

http://www.gurobi.com
http://www.gurobi.com

[40] Helmert, M., “The fast downward planning system.”, J. Artif. Intell. Res.(JAIR)
26, 191–246 (2006).

[41] Henrich, J., R. McElreath, A. Barr, J. Ensminger, C. Barrett, A. Bolyanatz,
J. C. Cardenas, M. Gurven, E. Gwako, N. Henrich et al., “Costly punishment
across human societies”, Science 312, 5781, 1767–1770 (2006).

[42] Hoffmann, J. and R. Brafman, “Conformant planning via heuristic forward
search: A new approach”, 170, 6–7, 507–541 (2006).

[43] Hoffmann, J. and R. I. Brafman, “Conformant planning via heuristic forward
search: A new approach”, Artificial Intelligence 170, 6-7, 507–541 (2006).

[44] Hoffmann, J. and B. Nebel, “The ff planning system: Fast plan generation
through heuristic search”, J. Artif. Int. Res. 14, 1, 253–302, URL http://dl.
acm.org/citation.cfm?id=1622394.1622404 (2001).

[45] Horvitz, E. J., A. Jacobs and D. Hovel, “Attention-sensitive alerting”, arXiv
preprint arXiv:1301.6707 (2013).

[46] Kamar, E., Y. Gal and B. J. Grosz, “Incorporating helpful behavior into collab-
orative planning”, in “Proceedings of The 8th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS)”, (Springer Verlag, 2009).

[47] Keren, S., A. Gal and E. Karpas, “Goal recognition design.”, in “ICAPS”, (2014).

[48] Keren, S., A. Gal and E. Karpas, “Goal recognition design for non-optimal
agents”, in “Proceedings of the AAAI Conference on Artificial Intelligence”,
vol. 29 (2015).

[49] Keren, S., A. Gal and E. Karpas, “Goal recognition design with non-observable
actions.”, in “AAAI”, pp. 3152–3158 (2016).

[50] Keren, S., A. Gal and E. Karpas, “Privacy preserving plans in partially observ-
able environments.”, in “IJCAI”, pp. 3170–3176 (2016).

[51] Keren, S., A. Gal and E. Karpas, “Strong stubborn sets for efficient goal recog-
nition design”, in “Twenty-Eighth International Conference on Automated Plan-
ning and Scheduling”, (2018).

[52] Keren, S., L. Pineda, A. Gal, E. Karpas and S. Zilberstein, “Equi-Reward Utility
Maximizing Design in Stochastic Environments”, in “IJCAI”, (2017).

[53] Keyder, E. and H. Geffner, “Heuristics for planning with action costs revisited.”,
in “ECAI”, pp. 588–592 (2008).

[54] Knepper, R. A., C. I. Mavrogiannis, J. Proft and C. Liang, “Implicit communi-
cation in a joint action”, in “Proceedings of the 2017 ACM/IEEE International
Conference on Human-Robot Interaction”, pp. 283–292 (ACM, 2017).

189

http://dl.acm.org/citation.cfm?id=1622394.1622404
http://dl.acm.org/citation.cfm?id=1622394.1622404

[55] Kocsis, L. and C. Szepesvári, “Bandit based monte-carlo planning”, in “Euro-
pean conference on machine learning”, pp. 282–293 (Springer, 2006).

[56] Kube, C. R. and H. Zhang, “Task modelling in collective robotics”, Autonomous
Robots 4, 1, 53–72 (1997).

[57] Kulkarni, A., T. Chakraborti, Y. Zha, S. G. Vadlamudi, Y. Zhang and S. Kamb-
hampati, “Explicable Robot Planning as Minimizing Distance from Expected
Behavior”, in “AAMAS”, (2019), extended Abstract.

[58] Kulkarni, A., S. Sreedharan, S. Keren, T. Chakraborti, D. Smith and S. Kamb-
hampati, “Designing environments conducive to interpretable robot behavior”,
in “2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)”, (IEEE, 2020).

[59] Kulkarni, A., S. Srivastava and S. Kambhampati, “A unified framework for
planning in adversarial and cooperative environments”, in “AAAI”, (2019).

[60] Kulkarni, A., S. Srivastava and S. Kambhampati, “Signaling friends and head-
faking enemies simultaneously: Balancing goal obfuscation and goal legibility”,
in “Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems”, AAMAS ’20, p. 1889–1891 (International Foundation
for Autonomous Agents and Multiagent Systems, 2020).

[61] Kyle Hollins Wray, S. Z., Stefan J. Witwicki, “Online decision-making for scal-
able autonomous systems”, in “Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, IJCAI-17”, pp. 4768–4774 (2017),
URL https://doi.org/10.24963/ijcai.2017/664.

[62] Lafferty, J., A. McCallum and F. C. Pereira, “Conditional random fields: Prob-
abilistic models for segmenting and labeling sequence data”, (2001).

[63] Langley, P., “Explainable agency in human-robot interaction”, in “AAAI Fall
Symposium Series”, (2016).

[64] Lindell, Y., “Secure multiparty computation for privacy preserving data mining”,
in “Encyclopedia of Data Warehousing and Mining”, pp. 1005–1009 (IGI Global,
2005).

[65] Luis, N. and D. Borrajo, “Plan merging by reuse for multi-agent planning”,
Distributed and Multi-Agent Planning p. 38 (2014).

[66] MacNally, A. M., N. Lipovetzky, M. Ramirez and A. R. Pearce, “Action selection
for transparent planning”, in “Proceedings of the 17th International Conference
on Autonomous Agents and MultiAgent Systems”, pp. 1327–1335 (International
Foundation for Autonomous Agents and Multiagent Systems, 2018).

[67] Mainprice, J., E. A. Sisbot, L. Jaillet, J. Cortés, R. Alami and T. Siméon,
“Planning human-aware motions using a sampling-based costmap planner”, in
“Robotics and Automation (ICRA), 2011 IEEE International Conference on”,
pp. 5012–5017 (IEEE, 2011).

190

https://doi.org/10.24963/ijcai.2017/664

[68] Maliah, S., G. Shani and R. Stern, “Stronger privacy preserving projections for
multi-agent planning.”, in “ICAPS”, pp. 221–229 (2016).

[69] Masters, P. and S. Sardina, “Cost-based goal recognition for path-planning”, in
“Proceedings of the 16th Conference on Autonomous Agents and MultiAgent
Systems”, pp. 750–758 (2017).

[70] Masters, P. and S. Sardina, “Deceptive path-planning”, in “Proceedings of the
Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-
17”, pp. 4368–4375 (2017), URL https://doi.org/10.24963/ijcai.2017/
610.

[71] McDermott, D., M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso,
D. Weld and D. Wilkins, “Pddl-the planning domain definition language”,
(1998).

[72] Mirsky, R., K. Gal, R. Stern and M. Kalech, “Goal and plan recognition design
for plan libraries”, TIST (2019).

[73] Narahari, Y., Game Theory and Mechanism Design, vol. 4 (World Scientific,
2014).

[74] Nguyen, T. A., M. Do, A. E. Gerevini, I. Serina, B. Srivastava and S. Kamb-
hampati, “Generating diverse plans to handle unknown and partially known
user preferences”, Artificial Intelligence 190, 0, 1 – 31 (2012).

[75] Oh, J., F. Meneguzzi, K. P. Sycara and T. Norman, “Antipa: an agent architec-
ture for intelligent information assistance.”, in “ECAI”, pp. 1055–1056 (2010).

[76] Palacios, H. and H. Geffner, “Compiling uncertainty away in conformant plan-
ning problems with bounded width”, Journal of Artificial Intelligence Research
35, 623–675 (2009).

[77] Pereira, R. F., N. Oren and F. Meneguzzi, “Landmark-based heuristics for
goal recognition”, in “Thirty-First AAAI Conference on Artificial Intelligence”,
(2017).

[78] Ramırez, M. and H. Geffner, “Plan recognition as planning”, in “Proceedings of
the 21st international joint conference on Artifical intelligence. Morgan Kauf-
mann Publishers Inc”, pp. 1778–1783 (2009).

[79] Ramırez, M. and H. Geffner, “Probabilistic plan recognition using off-the-shelf
classical planners”, in “Proceedings of the Conference of the Association for the
Advancement of Artificial Intelligence (AAAI 2010)”, (2010).

[80] Rankin, D. J., M. dos Santos and C. Wedekind, “The evolutionary significance
of costly punishment is still to be demonstrated”, Proceedings of the National
Academy of Sciences 106, 50, E135–E135 (2009).

[81] Rintanen, J., “Complexity of planning with partial observability.”, in “ICAPS”,
pp. 345–354 (2004).

191

https://doi.org/10.24963/ijcai.2017/610
https://doi.org/10.24963/ijcai.2017/610

[82] Sadigh, D., S. Sastry, S. A. Seshia and A. D. Dragan, “Planning for autonomous
cars that leverage effects on human actions.”, in “Robotics: Science and Sys-
tems”, (2016).

[83] Savitch, W. J., “Relationships between nondeterministic and deterministic tape
complexities”, Journal of computer and system sciences 4, 2, 177–192 (1970).

[84] Schadd, M. P., M. H. Winands, H. J. Van Den Herik, G. M.-B. Chaslot and
J. W. Uiterwijk, “Single-player monte-carlo tree search”, in “International Con-
ference on Computers and Games”, pp. 1–12 (Springer, 2008).

[85] Sengupta, S., T. Chakraborti, S. Sreedharan, S. G. Vadlamudi and S. Kamb-
hampati, “Radar-a proactive decision support system for human-in-the-loop
planning”, AAAI Fall Symposium on Human-Agent Groups: Studies, Algo-
rithms and Challenges (2017).

[86] Shekhar, S. and R. I. Brafman, “Representing and planning with interacting
actions and privacy”, in “Twenty-Eighth International Conference on Automated
Planning and Scheduling”, (2018).

[87] Sisbot, E. A., L. F. Marin-Urias, R. Alami and T. Simeon, “A human aware
mobile robot motion planner”, IEEE Transactions on Robotics 23, 5, 874–883
(2007).

[88] Sohrabi, S., A. V. Riabov and O. Udrea, “Plan recognition as planning revis-
ited.”, in “IJCAI”, pp. 3258–3264 (2016).

[89] Sreedharan, S., T. Chakraborti and S. Kambhampati, “Balancing explicability
and explanation in human-aware planning”, in “2017 AAAI Fall Symposium”,
pp. 61–68 (AI Access Foundation, 2017).

[90] Sreedharan, S., T. Chakraborti, C. Muise and S. Kambhampati, “Planning with
explanatory actions: A joint approach to plan explicability and explanations in
human-aware planning”, in “AAAI”, (2020).

[91] Sreedharan, S., A. O. Hernandez, A. P. Mishra and S. Kambhampati, “Model-
free model reconciliation”, in “Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI-19”, pp. 587–594 (Interna-
tional Joint Conferences on Artificial Intelligence Organization, 2019), URL
https://doi.org/10.24963/ijcai.2019/83.

[92] Sreedharan, S., S. Kambhampati et al., “Handling model uncertainty and mul-
tiplicity in explanations via model reconciliation”, in “Proceedings of the Inter-
national Conference on Automated Planning and Scheduling”, vol. 28 (2018).

[93] Srivastava, B., T. A. Nguyen, A. Gerevini, S. Kambhampati, M. B. Do and
I. Serina, “Domain independent approaches for finding diverse plans.”, in “IJ-
CAI”, pp. 2016–2022 (2007).

[94] Sutton, R. S. and A. G. Barto, Reinforcement learning: An introduction (MIT
press, 2018).

192

https://doi.org/10.24963/ijcai.2019/83

[95] Unhelkar, V. and J. Shah, “Contact: Deciding to communicate during time-
critical collaborative tasks in unknown, deterministic domains”, in “Proceedings
of the AAAI Conference on Artificial Intelligence”, vol. 30 (2016).

[96] Vallacher, R. R. and D. M. Wegner, “What do people think they’re doing?
action identification and human behavior.”, Psychological review 94, 1, 3 (1987).

[97] Štolba, M., Reveal or Hide: Information Sharing in Multi-Agent Planning,
Ph.D. thesis, Czech Technical University (2017).

[98] Wayllace, C., P. Hou and W. Yeoh, “New Metrics and Algorithms for Stochastic
Goal Recognition Design Problems”, in “IJCAI”, (2017).

[99] Wayllace, C., P. Hou, W. Yeoh and T. C. Son, “Goal Recognition Design with
Stochastic Agent Action Outcomes”, in “IJCAI”, (2016).

[100] Yorke-Smith, N., S. Saadati, K. Myers and D. Morley, “The design of a proactive
personal agent for task management”, Int. J. Artif. Intell. Tools 21 (2012).

[101] Zhang, H., Y. Chen and D. C. Parkes, “A general approach to environment
design with one agent”, in “IJCAI”, (2009).

[102] Zhang, Y., S. Sreedharan, A. Kulkarni, T. Chakraborti, H. H. Zhuo and
S. Kambhampati, “Plan explicability and predictability for robot task planning”,
in “International Conference on Robotics and Automation (ICRA)”, (2017).

[103] Zhuo, H. H. and S. Kambhampati, “Action-model acquisition from noisy plan
traces”, in “Twenty-Third International Joint Conference on Artificial Intelli-
gence”, (2013).

[104] Zhuo, H. H. and Q. Yang, “Action-model acquisition for planning via transfer
learning”, Artificial intelligence 212, 80–103 (2014).

193

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Thesis Overview

	BACKGROUND
	Preliminaries
	Planning
	Human-aware Planning
	Human's Mental Model of the Robot Model

	Implicit Communication through Behavior
	Interpretable Behavior
	Obfuscatory Behavior

	PLANNING FOR EXPLICABLE BEHAVIOR
	Related Work
	Explicable Planning Problem
	Model-based Explicable Planning
	Explicability Distance
	Plan Generation
	Evaluation using Simulated Autonomous Car Domain
	Evaluation using Robot based Delivery Domain

	Model-Free Explicable Planning
	Problem Formulation
	Labeling
	Learning Approach
	Plan Generation

	Evaluation using Block Stacking Robot Domain
	Domain Description
	Experimental Setup
	Results

	Concluding Remarks

	PLANNING FOR LEGIBLE BEHAVIOR
	Related Work
	Controlled Observability Planning Problem
	Observer's Belief Space
	Complexity Analysis
	Computing Solutions to COPP variants
	Variants of COPP

	Goal Legibility
	Computing Goal Legible Plans

	Plan Legibility
	Computing Plan Legible Plans

	Empirical Evaluation of COPP Problem Variants
	Domains and Experimental Setup
	Results

	Concluding Remarks

	ENVIRONMENT DESIGN TO FACILITATE EXPLICABLE BEHAVIOR
	Related Work
	Background
	Environment Design

	Design for Explicability
	Design for a Single Explicable Problem
	Design for Multiple Explicable Problems
	Longitudinal Impact on Explicable Behavior

	Solution Methodology
	Search for Optimal Design
	Compilation for Most Explicable Plan

	Evaluation
	Demonstration
	Domain setup
	Performance on IPC domains
	Interplay Between Inexplicability Score and Plan Cost

	Concluding Remarks

	PLANNING FOR OBFUSCATORY BEHAVIOR
	Related Work
	Goal Obfuscation
	Computing Goal Obfuscatory Plans

	Secure Goal Obfuscation
	Computing Secure Goal Obfuscatory Plans

	Plan Obfuscation
	Computing Plan Obfuscating Plans

	Empirical Evaluation of COPP Problem Variants
	Results

	Concluding Remarks

	PLANNING FOR SIMULTANEOUSLY OBFUSCATORY AND LEGIBLE BEHAVIOR
	mo-copp
	mo-copp Solution

	mo-copp Plan Generation
	mo-copp as Integer Program
	Search Algorithm

	Empirical Evaluation of mo-copp Solutions
	Domain Setup

	Concluding Remarks

	PLANNING FOR ASSISTIVE BEHAVIOR
	Related Work
	ma-copp
	Robot Modeling of Human's Belief Update
	Formal Guidelines for a Proactive Assistant

	Solution Methodology
	Evaluation
	Empirical Evaluation
	User Study

	Concluding Remarks

	CONCLUSION
	Summary
	Discussion and Future Work
	Landscape of Robot Behaviors
	Legibility via Projection-Aware Planning
	Future Directions for Environment Design For Explicability
	Generalizing mo-copp Framework
	Generalizing ma-copp Framework
	Assumptions used in the Problem Settings

	Takeaways

	REFERENCES

