
Planning for Attacker Entrapment in Adversarial Settings

Brittany Cates,1 Anagha Kulkarni, 2 Sarath Sreedharan 1

1 Department of Computer Science, Colorado State University, CO, USA
2 Invitae Corporation, San Francisco, CA, USA

brittany.cates@colostate.edu, anagha.kulkarni@invitae.com, sarath.sreedharan@colostate.edu

Abstract

In this paper, we propose a planning framework to gener-
ate a defense strategy against an attacker who is working in
an environment where a defender can operate without the
attacker’s knowledge. The objective of the defender is to
covertly guide the attacker to a trap state from which the at-
tacker cannot achieve their goal. Further, the defender is con-
strained to achieve its goal within K number of steps, where
K is calculated as a pessimistic lower bound within which
the attacker is unlikely to suspect a threat in the environment.
Such a defense strategy is highly useful in real-world systems
like honeypots or honeynets, where an unsuspecting attacker
interacts with a simulated production system while assum-
ing it is the actual production system. Typically, the inter-
action between an attacker and a defender is captured using
game theoretic frameworks. Our problem formulation allows
us to capture it as a much simpler infinite-horizon discounted
MDP, in which the optimal policy for the MDP gives the de-
fender’s strategy against the actions of the attacker. Through
empirical evaluation, we show the merits of our problem for-
mulation.

1 Introduction
Adversarial planning is a topic that has received signifi-
cant attention in recent years (Masters, Kirley, and Smith
2021; Bernardini, Fagnani, and Franco 2020; Chakraborti
et al. 2019). It has been considered in a diverse range of
settings, from simple path planning (Masters and Sardina
2017) to more realistic cybersecurity problems (Letchford
and Vorobeychik 2013). These works have not only pro-
vided the community with an opportunity to showcase the
effectiveness of modern planning tools, but to develop new
planning paradigms better suited to handling such cases (for
example, the Stackelberg planning formulation (Speicher
et al. 2018)). An underlying theme in many of the above-
mentioned examples is that the problem is framed as essen-
tially game-theoretic in nature. Through this paper, we hope
to introduce a new class of adversarial planning problems of
practical import, which lends itself to a simple and intuitive
planning formulation.

In this paper, we introduce the attacker entrapment prob-
lem, which involves a hidden defender manipulating its en-
vironment to undermine an attack. We will conceptualize
this as a problem of leading an attacker, oblivious to the de-
fender’s presence, to predetermined trap states. The effec-

tiveness of the defender relies on its ability to keep its pres-
ence hidden from the attacker. As long as the attacker is un-
aware of the defender’s existence, the defender can rely on
basic planning techniques to identify the defender’s strate-
gies.

While this may seem like an unrealistic setting, it is in
fact a widely studied problem in the domain of cybersecu-
rity. Specifically, honeypots are a strategy often used in real-
world networks to address attacker entrapment problems. As
the name suggests, honeypots are used to lure and trap black
hat attackers by simulating a real production system that the
attackers can penetrate and interact with. Honeypots can be
used as a defense mechanism to divert the attacker from
a real system and trap them, or they can be used to study
an attacker’s strategies in order to develop stronger security
mechanisms.

It is worth noting that current strategies for developing
honeypots are completely offline processes. The network de-
signer is tasked with organizing a system so that honeypots
corresponding to attractive targets are placed in a potential
attacker’s path. From the perspective of an attacker entrap-
ment problem, this represents a mechanism or environment
design solution (Keren, Gal, and Karpas 2021). We instead
propose a novel, active solution, which uses a planner to
adapt to potential actions taken by the attacker.

We will capture the planning problem of the defender as a
Markov Decision Process (MDP). While concealing its pres-
ence, the defender will use the attacker’s beliefs about the
system architecture to predict the attacker’s strategy and lead
the attacker to a predetermined trap state. It will mask its
own actions using the attacker’s beliefs about the stochastic-
ity of the domain. Unbeknownst to the attacker, the defender
can control the outcome of certain attacker actions. For ex-
ample, the defender could decide what password should be
returned to the attacker in response to an SQL injection at-
tack, or when considering the security of a physical space,
which automatic door to open when the attacker reaches a
room. By carefully selecting the outcomes, the defender can
lead the attacker to a trap state or failing that, lead them to a
state with lower utilities.

In addition to introducing this problem framework and
a solution technique, we will introduce a way to calculate
a budget for defender actions. We will show how such a
budget allows the defender to manipulate outcomes with-

Figure 1: A diagram illustrating the running example. Here we see an attacker trying to break into a specific room to steal an
object. The defender’s goal is to get the attacker to enter one of the trap rooms highlighted in grey by controlling which of the
automatic doors open when the attacker enters a room.

out arousing the attacker’s suspicion that the environment is
being controlled. We will evaluate our solution on several
traditional MDP benchmarks and present the computational
characteristics of our method.

To summarize, the contributions of this paper includes:

1. Identification and formalization of the attacker entrap-
ment problem.

2. Formulation of a solution to attacker entrapment problem
as an MDP planning problem.

3. Development of search based methods to identify a
lower-bound on the defender budget that is guaranteed
to avoid detection from the attacker.

4. Evaluation of the effectiveness of solution methods in re-
ducing the attacker values, on a number of standard MDP
benchmarks.

2 Motivating Example
As a running example, we consider a simple scenario involv-
ing the security of a small showroom. The attacker takes the
form of a thief, who is attempting to steal a valuable dia-
mond from the showroom. The thief has access to a map of
the showroom and knows the exact location of the valuable
item. The only source of stochasticity within this domain is a
set of automatic doors spread throughout the showroom. The
attacker is under the impression that whenever they enter a
room with multiple doors, one of the doors will open with
uniform probability. However, unbeknownst to the attacker,
there exists an automated defender agent that can control
which doors will open. The objective of the defender is to
choose the doors which will lead the attacker into one of
the trap states highlighted in grey. While the attacker knows
these rooms exist, they do not know that these are trap states.

Let Figure 1 correspond to the layout of the showroom
and the current position of the attacker. The defender could
choose to open door D3. If the attacker is a rational agent,
they would simply follow the corridor until they enter the
trap state. However, this may not be the case. They may

wander into the lower corridor instead. The defender would
need to adapt by opening door D11, leading the attacker to
another trap state. The defender will have to keep track of
where the attacker may be going and what they may be do-
ing, so it can respond in turn and achieve the desired out-
come. In addition to directing the attacker into one of the
trap states, the defender may also have other considerations.
For example, some of these hallways might be lined with ex-
pensive items that the attacker could damage. To avert such
costly risks, the defender can force the attacker to use paths
which minimize the potential damage.

3 Background
We capture the planning problem as an infinite horizon
discounted Markov Decision Process or MDP (Puterman
1990). Keeping with standard notations, we will represent
this MDP as a tuple of the form M = ⟨S,A, T,R, γ, S0⟩,
where S is the set of states, A is the set of actions, T : S ×
A×S → [0, 1] is the transition function, R : S×A×S → R
is the reward function, γ ∈ [0, 1) is the discount factor and
S0 the initial state for the task. The solution concept used
in this class of MDPs corresponds to stationary determinis-
tic policies, henceforth referred to simply as policies. Each
policy π corresponds to a function,i.e., π : S → A, that
associates an action with each possible state. The value of
a given policy π, V π : S → R, captures the expected dis-
counted sum of rewards obtained by executing the given pol-
icy from a state. Similarly, a Q function Qπ : S × A → R,
captures the expected discounted sum of rewards obtained
by executing a specific action in the given state and then
following the policy π. A policy is said to be optimal for
M (denoted as π∗) if there exists no other policy π′ and
state s ∈ S, such that V π′

(s) > V π∗
(s). We will denote

the value function corresponding to the optimal policy, us-
ing the notation V ∗(we will similarly denote the optimal Q
function using the notation Q∗). We will use the term trajec-
tory to refer to a sequence of states and actions (denoted as
τ = ⟨s0, a0, ..., si⟩). We will use the notation P (τ |M), to

capture the likelihood of a trace τ occurring under a given
model M, where we define the probability recursively as

P (τ |M) = T (s0, a0, s1)× P (⟨s1, a1, ..., si⟩|M)

In this paper, we will associate a different MDP with both
the attacker and the defender, so we differentiate the two
MDPs and their components using the superscript A and D

4 Our Approach
At the heart of our approach lies the interaction between
two agents, an attacker (A) and a hidden defender (D).
Each agent has a model of the problem that they be-
lieve they are solving. The attacker starts with an in-
finite horizon discounted MDP of the form MA =
⟨SA, AA, TA, RA, γA, SA

0 ⟩, where SA are the set of states
that the attacker ascribes to task, AA is the set of actions
the attacker can perform, TA is the attacker’s belief about
how the task may evolve in response to the attacker’s ac-
tions, and finally, RA and γA represent the attacker’s inter-
nal reward function and discounting. To simplify the formu-
lation, we will assume that the attacker reward is always a
non-negative value. As discussed, this may be a purpose-
fully distorted version that the defender may have leaked to
the outside world. We will denote the value function calcu-
lated from this model as VA and denote the optimal value
as VA∗ (we will similarly use QA for the Q value). In the
above example, the attacker’s states consist of the various
positions the attacker can be in and the actions correspond
to those for moving around the showroom and finally steal-
ing the diamond when the attacker is in the final room.

One piece of information that the defender does not have
access to is the potential policy that the attacker might fol-
low. While the defender might not be able to infer the ex-
act policy, the defender can still generate a distribution over
possible attacker action from the model. In particular, the
attacker’s decision-making can be modeled using a noisy-
rational model (Jeon, Milli, and Dragan 2020). This is gen-
erally a very conservative model that still allows probabil-
ities for non-optimal actions and has the additional advan-
tage of being a psychologically feasible model and thus able
to model cases where we might be dealing with a human
attacker. For example, the use of such noisy-rational model
would allow us to capture the possibility that the attacker
may wander from the optimal path in the example provided
in Figure 1. In particular, we will define the probability of
action selection to be

P (a|s) ∝ eκ×QA∗(s,a), Where s ∈ SA a ∈ AA

Effectively, this corresponds to a probabilistic distribution
where higher value actions are given more weight and κ is
a parameter that allows us to control how likely the attacker
may select a non-optimal action.

While an attacker would try to maximize the expected cu-
mulative reward they receive, the goal of the defender is to
lead the attacker to one of the possible trap states, while min-
imizing the total reward the attacker may receive (after all,
the attacker’s reward may correspond to cases where they

could be destroying or generally disrupting the operations
on the target environment). The defender has access to two
types of actions. The first is a single noop action wherein
the defender does not alter the environment, allowing the at-
tacker to execute its chosen action. In the second case, the
defender chooses which of the potential outcomes of an at-
tacker’s action should be applied to the environment, which
in our running example corresponds to deciding which of
the doors next to the attacker should open.

Furthermore, we will place a limit on the number of times
the defender gets to select a specific outcome. In addition to
placing limits on what the defender can do, it also reflects
the simple fact that if the defender keeps choosing a specific
outcome for a particular attacker action in a state, it may
lead to the attacker being suspicious that they may be incor-
rect about the model. In our motivating example, consider
the starting position for the attacker. There are three poten-
tial doors next to the attacker and per the defender’s policy
it chooses to open door D3. Now if the attacker decides to
just stay in that room, they would expect one of the doors
to again open in the next turn. Now let’s assume that the de-
fender keeps opening the same door, regardless of how many
times the attacker chooses to stay in the room. Even if the at-
tacker chalks up the first few instances to the randomness of
the environment, they may start doubting their knowledge
about the environment if the same outcome keeps getting
selected. Such change in beliefs could end up affecting the
attacker’s behavior, which in turn could reduce the effective-
ness of the method.

Thus, we will limit the defender’s actions to the first K
steps. Section 4.1 will provide a more formal description
of this phenomena and how exactly we can calculate a pes-
simistic lower bound on K. With these component defini-
tions in place, we are now ready to define our central prob-
lem as follows:

Definition 1. For a given attacker operating using a model
of task MA, in an environment with a set of trap states ST

where the attacker receives 0 reward, an attacker entrap-
ment problem of budget K corresponds to the problem of the
defender selecting a sequence of K actions (either NOOP or
outcome-selection actions), that would result in minimal cu-
mulative reward for the attacker.

Our primary argument in this paper would be that given
this setting, we can encode the optimal attacker entrapment
problem as another MDP. Solutions to this MDP will auto-
matically devise a policy for the defender that will look at the
actions taken by the attacker and decide how the outcomes
could be shaped to get the best possible result from the de-
fender’s point of view. This new MDP would again take the
form of an infinite horizon discounted MDP. However, now
the state space consists of the underlying state (same as the
one observed by the attacker), the action being followed by
the attacker and the remaining budget. As discussed the ac-
tions involve a noop action and a set of actions that can
choose which of the outcomes to manifest. Each action (even
noop) will also lead to a decrease in the budget. The attacker
action component of the state is determined by the likelihood
of the attacker selecting that action in that state (defined per

PA). All states where the budget hits zero and the ones that
are trap states are treated as absorbing states. Now in terms
of the reward function, for every non-absorbing state the re-
ward corresponds to the negative of the reward received by
the attacker. For absorbing states, the defender receives zero
reward for all trap states and will receive the negative of the
optimal value for the attacker model. This means that the
system will try to drive the state to one of the trap states
while trying to pass through low-reward states for the at-
tacker. Failing that, the objective would be to reach a state
with the minimal value for the attacker. Again all the de-
fender actions are limited by the budget.

More formally, the defender model is given as

MD
(ST ,K) = ⟨SD, AD, TD, RD, γD, SD

0 ⟩,

where ST ⊆ SA is the set of trap states. Here the states
are given as SD = SA × AA × IK , such that IK ⊆ Z,
and actions asAD = {noop} ∪ aDs |s ∈ SA. For every state
(s, a, k) ∈ SD where s ̸∈ ST and k ̸= 0, the transition
probabilities is defined as,

TD((s, a, k), noop, (s′, a′, k′)) =

TA(s, a, s′)× PA(a′|s′)

if k′ = k − 1

0 otherwise

For the non-noop actions the transition probabilities is de-
fined as

TD((s, a, k), aDŝ , (s
′, a′, k′)) =

{
1 if k′ = k − 1 and ŝ = s′

0 otherwise

For an absorbing state all transition probabilities would
be zero. Now for the reward, for all non-absorbing state
RD((s, a, k)) = −1 × RA(s), while for a state s ∈
ST , R

D((s, a, k)) = 0 for all k and for all states where
k = 0 and the state is not a trap state RD((s, a, 0)) =
−1 × QA∗(s, a). By allowing the reward value to be equal
to the negative of the optimal Q value of the agent, we al-
low for the fact that once the defender stops acting in the
world, the attacker is free to achieve the maximum possible
value. This adds an additional incentive on the defender end
to drive the attacker to lower value states if the defender is
unable to lead the attacker to a trap state. The discount factor
is kept the same as that of the attacker. One could also as-
sociate a cost with each action defender chooses and restrict
the non-noop actions to some subset of states, but we will
skip those to keep the formulation simple.

It is worth noting that the above formulation chooses to
include budget as part of it’s state rather than considering a
finite horizon MDP. This is because under a finite horizon
MDP, the reward associated with a state is not dependent on
the time step. On the other hand, in this case we want to set
the reward to be equal to negative of the attacker’s Q value
in states where the defender’s budget is zero. It is unclear,
how we can easily capture this using finite horizon MDPs.

It is also worth noting that depending on the scenarios,
the ability of the defender to determine the outcome might
be restricted to some set of states or actions. Or there might
be some cost associated with enforcing some specific out-
come. The above formulation can easily be modified to cap-
ture such consideration. However, we will go with this less

restricted and simpler setting to allow for a cleaner formu-
lation and to potentially derive guarantees on possible de-
fender behaviors. In particular, we can use this formulation
to establish a relationship between the optimal value func-
tion of the defender MDP and the attacker MDP.
Proposition 1. For any given state s ∈ SA, the opti-
mal value of any corresponding state (s, a, k), is given as
|VD∗((s, a, k))| ≤ QA∗(s, a), for all attacker actions a and
current budget value k.

Proof. We can easily show this relation through induction,
by proving a stronger relation, namely VD∗((s, a, k)) ≥
−1 × QA∗(s, a). This is equivalent to stating that −1 ×
VD∗((s, a, k)) ≤ QA∗(s, a) and since VD∗(s, a) ≤ 0 (a
result of the assumption about the original RA), the rela-
tion |VD∗((s, a, k))| ≤ QA∗(s, a) holds when you con-
sider the absolute values. The relation VD∗((s, a, k)) ≥
−1 × QA∗(s, a) trivially holds when k = 0. Now assum-
ing that the relation holds for any state with budget k = i,
let us consider the value of a state for budget k = i + 1.
Following the Bellman equations the value will be defined
as

VD∗((s, a, i+ 1)) =

RD((s, a, i+ 1))+

maxaD (
∑

(s′,a′,i)

(TD((s, a, i+ 1)), aD, (s
′, a′, i))×

VD∗((s′, a′, i))

Now we know that the relation holds for states with bud-
get i thus VD∗((s′, a′, i)) ≥ −1 × QA∗((s′, a′)) ≥ −1 ×
VA∗((s′, a′)), thus

VD∗((s, a, i+ 1)) ≥ RD((s, a, i+ 1))+

maxaD (
∑

(s′,a′,i)

(TD((s, a, i+ 1)), aD, (s
′, a′, i))×−1× VA∗(s′))

Now we have two possible candidates for the aD with the
maximum value. Either it’s a deterministic selection of an
outcome or it’s a noop action. If it’s the former, the Bellman
operator would select the state with the lowest VA∗, say s̄,
thus we have

VD∗((s, a, i+ 1)) ≥ −1× (RA(s) + VA∗(s̄))

≥ −1×QA∗(s, a)

where,

QA∗(s, a) = RA(s) +
∑
ŝ

VA∗(ŝ))

The fact

−1× (RA(s) + VA∗(s̄)) ≥ −1×QA∗(s, a)

follows from the fact that

RA(s) + VA∗(s̄) ≤ QA∗(s, a)

which in turn follows from the fact that the lowest value of
VA∗ would be less than the weighted sum of the VA∗ for all

the other reachable state. Thus proving the required relation
holds when the action that provides the maximum value is
an outcome selection action. In the case, of a noop action,
the Bellman equation for VD∗((s, a, i + 1)) directly maps
over to −1 × QA∗((s, a)), as the action results in the same
transitions as it would have occurred in the attacker model.
This proves the original result.

Note that for an attacker starting from a given state s
and performing an action a, the expected value the attacker
would obtain would be upper bounded by |VD∗((s, a,K))|.
This follows intuitively from the fact that for all non-
terminal state, the reward associated with a state in MD is
just the negative of the reward received by the attacker. For
a terminal state, if it is a trap state, the attacker would in fact
receive zero reward. If the terminal state corresponds to a
state where the budget is zero, then the defender receives the
negative of the optimal Q value for the action taken by the at-
tacker. This is an upper bound on the value the attacker could
receive from that state onward. Thus the above proposition
establishes the fact that an optimal policy derived using the
above formulation, will never result in the attacker receiving
a higher value. In fact, as we will see in the evaluation sec-
tion, our method is generally very effective at reducing the
total expected value received by the attacker.

4.1 Budget
The formulation discussed before will never generate a state
action sequence that is not possible under the model used
by the attacker. As such regardless of the choices made by
the defender, in theory, the attacker wouldn’t be surprised
by the outcomes observed. However, our choice to restrict
the defender’s actions to the first K steps is a reflection of
the fact that this would hardly ever be true in practice. A
more realistic assumption is that the attacker may in fact
maintain some uncertainty about their own beliefs about the
environment model. To approximate how the attacker’s be-
liefs about the model may evolve we will assume that the
attacker is a Bayesian reasoner, an assumption that would
fit well even when the attacker may be human. Under this
approximation, the attacker will maintain two hypotheses
about the environment, either that the environment model
is the same as MA or that they do not understand the sys-
tem dynamics at all. Effectively, the second hypothesis cor-
responds to a case where the human believes the underly-
ing model could be anything other than the one specified by
MA. This is closely related to problems like new species
induction (Zabell 1992) and open-world reasoning (Senator
2019). However, as works like (Sreedharan et al. 2021) have
shown one could approximate this by using a high entropy
model as the basis for this second hypothesis. In this second
hypothesis the human believes that transition to any state is
possible from any given state when any action is executed.
Keeping with the previous literature we will represent this
model as M0 = ⟨SA, AA, T 0, R0, γA⟩, such that for all
s, s′ ∈ SA and a ∈ AA, we have

T (s, a, s′) =
1

|SA|

Since we are interested in worst case scenarios, we will
assume a truly unbiased attacker whose belief about the
model is equally distributed across these two hypotheses.
Note that assuming that the attacker is an agent that is op-
erating under this uncertainty doesn’t shift the policy of the
attacker from what was defined in earlier section as under
M0 all policies are equivalent, as such the attacker actions
are determined by MA.

Now the objective of the defender would be to avoid the
attacker from placing more weight on the hypothesis of them
being incorrect about the model. If they start believing that
they could be wrong about the model before they reach a
trap state, they could take corrective or evasive actions. Now
one could adopt a belief MDP style formulation (Kaelbling,
Littman, and Cassandra 1998), where we track the exact be-
lief of the attacker, however, the setting affords to use the
opportunity to leverage more efficient formulations that still
guarantee the attacker does not tip the attacker’s belief about
them being incorrect about the underlying model. In particu-
lar, the budget represents in the worst case the minimal num-
ber of transitions that can occur from the initial state wherein
the attacker’s beliefs may tip over to M0. More formally, we
can now define the budget K as follows:

Definition 2. For a given pair of attacker models MA and
M0, the defender action budget is given as K, if

1. There exists a trace τ = ⟨s0, a0,, sK⟩ of length K
(i.e., |τ | = k) such that, s0 = SA

0 , P (τ |MA) > 0, and
P (τ |MA) < P (τ |M0)

2. And, there doesn’t exist another trace τ ′ of length less
than K that meets the same conditions

That is, K corresponds to the shortest possible trace that
is still possible under MA, which may be better explained
by M0 than MA. By restricting the defender’s actions to a
length less than K the defender would never be able to se-
lect a path to a trap state that could potentially tip the beliefs
of the attacker (this even includes potential worst-case tran-
sitions that could occur in states where the defender chooses
to use no-op actions).

Now the question is how does one calculate this budget
K. A simple way to do this is to turn it into a uniform-cost
search problem. Specifically, we will start the search from
the initial state, at any state the search can select one of the
many transitions possible from that state, always expand-
ing the prefix with the shortest length and ending the search
when we have a trace that is likelier in M0than MA. There
may be cases where such an upper bound may not exist or
may be too long for it to be of any practical importance to
the defender. So we can stop the search if we know the K is
going to be above some prespecified limit. We can find this
limit by solving the defender MDP (MD) without budget
restrictions (and changing the reward function so it only re-
flects the number of steps needed before the attacker reaches
a trap state) and looking at the optimal policy. This gives us
the expected discounted number of steps the defender would
need to get the optimum outcome and if the K is above that
limit, then it does not really matter. If we are additionally
guaranteed that at least one trap state is reachable from ev-
ery state in the MDP, we can set the discount factor to 1 to

get a more accurate estimate of the steps.

5 Empirical Evaluation
Our primary focus with these evaluations was to evaluate
the computational characteristics of our proposed method on
some standard MDP planning benchmarks. We chose some
popular variations of a grid world domain to see how well
our method performs as we vary the size and trap locations.
We considered the following domains.

1. Gridworld: This is the basic grid world domain. The
agent’s goal is to navigate from a fixed initial state to
a goal position. Its path to the goal may be blocked by
walls and cells with lava pits. We tested our method on
four different instances of grid world, with sizes of 4×4,
6×6, 8×8 and 9×9. For each grid instance, we tested our
method five times using traps states generated at differ-
ent random locations. The stochasticity in this domain is
controlled via a slipping probability that causes the agent
to move in a different direction with a small probability.

2. Four Rooms: A popular variation of the grid world, in
which the agent must navigate through different rooms
by using the door connecting the rooms. This domain is
particularly popular within the context of hierarchical RL
literature (Sutton, Precup, and Singh 1999). As in the pre-
vious case, we used four instances of sizes 4 × 4, 6 × 6,
8×8 and 9×9. Each instance was again tested on five ran-
domly generated trap states. Interestingly, we found that
the specific implementation of the four rooms problem
generator we used created instances where the attacker
could not reach the goal location for both mazes of sizes
4×4 and 8×8. The source of stochasticity of the domain
remains the same as the original grid world.

3. Next, we considered an MDP version of the rock sam-
pling domain introduced by Smith and Simmons (2012).
The agent takes the form of a rover that needs to go
around collecting good rock samples from various points
of the grid. We again consider grids of the same four size
and each instance was tested five times on randomly gen-
erated traps. The source of stochasticity of the domain
remains the same as the original grid world. The original
domain had a negative reward for sampling bad rocks,
which we skipped for this experiment.

4. Finally, we consider a puddle domain (Boyan and Moore
1994), in which the agent needs to reach a goal state
while avoiding water puddles. Our implementation used
a fixed map of size 1 × 1, but allowed variations in the
size of the step being taken by the agent. We looked at
step sizes (δ) of 0.2, 0.3, 0.4, and 0.5. Each step size was
again tested five times over randomly selected trap po-
sitions. The source of stochasticity was again the proba-
bility of slipping. In the original task definition, moving
through a puddle causes a negative reward. However, to
ensure that the agent only receives non-negative value,
we added a positive reward for all actions that occur out-
side the puddle, while actions within the puddle receive
zero rewards. While this could change the optimal behav-
ior of the agent, it still remains a viable test domain as the

defender could still use the stochasticity of the domain to
lead the agent to specific trap states.

We used value iteration as our planning method, and used
the implementation provided by the Simple RL framework
(Abel 2019). We also used the task implementation provided
by the framework with minimal changes made to ensure
the attacker’s reward was always positive and the source of
stochasticity was symmetric across the domains. We used a
uniform cost search for the calculation of the defender bud-
get. To keep the budget calculation simple, we kept an up-
per bound of 15 steps on the defender budget. If the search
looked at paths of length higher than 15 steps, the search
simply returned 15 as the defender budget. While this places
a simple limit on the possible defender budget, ensuring the
budget search ends in finite time, one could also calculate
task-specific budget limits using the method discussed in
Section 4.1.

Table 1 presents a summary of the results. All reported
values are averaged across five instances. The slip probabil-
ity for all instances was kept at 0.5. All experiments were
run with a timeout of 30 minutes.

The primary points of comparison are the value obtained
by the attacker if no defender were present and the value ob-
tained by the defender. When the defender intervenes, the
effective value obtained by the attacker is equal to the abso-
lute value of the defender value. Our method decreases this
value in almost every case. The only two instances that do
not hold to this pattern are the ones where the attacker value
is already zero.

The instances with values equal to 0 are ones in which
the defender policy can guarantee that the attacker will be
led to a trap state. We see this primarily in the rock sam-
pling domain and the puddle domain. The defender’s ability
to induce policies that guarantee the attacker will be trapped
depends on multiple factors, including the reachability of the
trap state from the attacker’s starting position, the possible
policies that may be followed by the attacker, the potential
stochasticity in the domain (so the defender can mask its ac-
tions), and the budget available to the defender. The domains
where we saw more frequent defender policies which guar-
anteed entrapment were those with fewer obstacles that the
attacker could not cross. In the case of the puddle, even the
puddle doesn’t prevent the agent from moving through there,
but only causes a smaller reward. Similarly, in the case of the
rock sampling domain, the agent is free to move through the
map.

Another factor we were interested in measuring was the
time taken by the defender to produce a policy. In theory,
the policy generated by the defender would consider all pos-
sible behavior that the attacker could exhibit. In our current
formulation, the defender planning time is not a major bot-
tleneck. Yet it is still an interesting question to study, as our
method relies on a complex compilation which considerably
increases the state space of the problem instance. The re-
sults show that, for most cases, the system was able to gen-
erate policies within a reasonable amount of time for all do-
mains except Rock Sampling. For Rock sampling our ap-
proach timed for grids of sizes 8× 8 and 9× 9. However, it
is worth noting that the current planning framework we use

Problem Instance Average Value of the attacker Average Value of the defender Average Defender
Planning Time (secs)

Task Instance

Gridworld

4× 4 0.94 -0.32 0.46
6× 6 0.89 -0.43 5.19
8× 8 0.83 -0.33 74.68
9× 9 0.83 -0.24 94.55

Four Rooms

4× 4 0 0 0.013
6× 6 0.85 -0.24 21.35
8× 8 0 0 1.085
9× 9 0.78 -0.48 62.51

Rock Sampling

4× 4 735.46 0 14.87
6× 6 868.91 0 272.68
8× 8 - - -
9× 9 - - -

Puddle

δ = 0.2 529.08 0 0.14
δ = 0.3 534.42 0 0.07
δ = 0.4 547.72 0 0.04
δ = 0.5 547.72 0 0.04

Table 1: Empirical evaluation of the proposed algorithm on a number of standard MDP benchmarks)

(i.e., Simple RL) adds overhead to our approach which may
be avoidable in many MDP planning settings. Simple RL
framework focuses on using a generative specification of the
task and performs a separate sampling process to create an
estimate of the explicit transition function. In cases where
the model is given upfront, we could avoid the need to per-
form such model estimation operations. As expected, for the
problems where the planner succeeds we see the time taken
increase with the size of the problem. In the case of the pud-
dle domain, it is worth noting that the effective size of the
state space increases with a step size. So the problem cor-
responding to step size δ = 0.2 corresponds to the largest
problem and δ = 0.5 the smallest one. A future goal for the
project could be the use of a faster online planner to generate
defender strategies.

6 Related Work
Much of the literature (Liu et al. 2021; Masters, Kirley, and
Smith 2021; Masters et al. 2020; Masters and Sardina 2017)
around deceptive path planning involves an agent obfuscat-
ing its goal or path in order to mislead a passive observer.
The defender described in our method turns this problem on
its head. It is instead, an active observer attempting to de-
ceive another agent. In their survey of agent interpretability,
Chakraborti et al. (2019) speculate that a fully active ob-
server could have its “own goals and actions, with the ability
to even assist or impede the agent from achieving its goals”.
The latter is precisely what is achieved by our defender. To
the best of our knowledge, this is the first work to imple-
ment an active observer agent whose influence and indeed,
the very existence remains unknown to the agent it is deceiv-
ing.

Deception (Bell and Whaley 1982) requires that the de-
ceiver must be able to influence the target’s actions and it

must be possible for the target to misread its situation (Davis
2016). Masters and Sardina (2017) makes a distinction be-
tween deception which uses simulation, and that which uses
dissimulation. Simulation is generally described as “show-
ing the false.” Whereas dissimulation, by contrast, is de-
scribed as “hiding the real.” Put another way, telling a lie
is a form of simulation, while a lie of omission is a form of
dissimulation. The defender uses only dissimulation. It does
not explicitly convey false information, such as convincing
the attacker that the target is in a different location. It sim-
ply allows the attacker to maintain the false belief that the
environment is not being controlled by an unseen adversary.

The defender can be further classified using the more spe-
cific categories of AI deception established by Masters, Kir-
ley, and Smith (2021). It employs a strategy of calculating
deception, in which the deceiver possesses more knowledge
about the environment and exploits this knowledge to gain
advantage over the opponent. In this case, the asymmetry of
knowledge is awareness of the defender’s existence and the
presence of trap states. Unbeknownst to the attacker, the de-
fender guides the attacker’s movements toward the equally
unknown trap states.

It is useful to compare the defender’s method with those
of other deceptive path planning agents. Kulkarni, Srivas-
tava, and Kambhampati (2019) chose obfuscated paths for
adversarial path planning scenarios by conducting a search
over nodes which represent each state along with the belief
state of the adversary. Paths were chosen, in part, based on
how they affected the adversary’s belief state. Specifically,
the planning agent aims to choose a path that does not make
its goal known to an adversarial observer (Kulkarni et al.
2018; Keren, Gal, and Karpas 2016; Bernardini, Fagnani,
and Franco 2020; Kulkarni, Srivastava, and Kambhampati
2020). Likewise, our defender agent calculates its budget,

the number of actions it can take, by finding the shortest path
to a trap state which does not violate the attacker’s model of
the environment’s rules.

7 Conclusion and Discussion
The primary contribution of this paper has been the intro-
duction of the attacker entrapment problem, in which an at-
tack is undermined by a covert defender. Both agents, each
represented using a Markov Decision Process, select actions
which maximize their value. The defender maximizes value
by leading the attacker to choose actions that minimize its
own value, ideally ending in a trap. By only choosing actions
that do not alert the attacker to its presence, the defender is
able to exploit its opponent’s ignorance of the environment,
thereby thwarting the unwitting interloper.

By demonstrating this interaction in four MDP bench-
mark domains, we have shown that a defender agent like
the one described can effectively reduce the value obtained
by an attacker. We have also presented a method for calcu-
lating a pessimistic lower bound on the number of interven-
ing actions which a defender can take without altering an
attacker’s belief about the environment.

Future iterations of this research could investigate differ-
ent planning strategies. Our current method calculates ev-
ery possible state for every possible attacker action, which
would be prohibitively slow for a large state space.As a next
step, we hope to investigate the utility of online and approxi-
mate planners, to make our approach more widely applicable
in a variety of adversarial scenarios.

Past works have framed deceptive path planning in terms
of an agent deceiving a passive observer (Kulkarni, Srivas-
tava, and Kambhampati 2019; Ornik and Topcu 2018). The
observer does not know the agent’s goal or plan, and it must
continually update its own beliefs by inferring intent from
the opponent’s actions. An interesting problem for future
research would be to replace the passive observer in these
scenarios with our defender agent. The defender could be
modified to maintain an estimation of the attacker’s belief
state, which can be updated based on the attacker’s actions.
The defender could still conceal its presence, but the ability
to handle evolving attacker beliefs would make it more ro-
bust if its presence became known. The defender could even
make choices that risk violating the attacker’s concept of the
environmental rules if doing so would ultimately lead to a
more desirable outcome.

Such changes lead us toward a more realistic mental
model for potential human attackers in a real-world setting.
Another step toward a defender that could contend with a hu-
man attacker would be the exploitation of cognitive biases.
Though humans often think of themselves as rational beings,
they are not purely rational and, in fact, their rationality fails
in predictable ways. These predictable failings, called cog-
nitive biases, have been categorized and well-documented
in psychological literature. In future research, we plan to de-
termine how common cognitive biases can be represented
and detected in planning problems. A defender which could
take advantage of these weaknesses would be equipped to
deceive an opponent using more clever and subtle strategies.

It is our hope that the concepts we have introduced will
provide fruitful avenues for future research. Through this
simple example, we have demonstrated the potential utility
of a covert defender in adversarial path-planning tasks. We
are eager to further investigate this line of research and look
forward to the new problems it will lead us to explore.

References
Abel, D. 2019. simple rl: Reproducible Reinforcement
Learning in Python. In RML@ ICLR.
Bell, J. B.; and Whaley, B. 1982. Cheating: Deception in
war & magic, games & sports, sex & religion, business &
con games, politics & espionage, art & science. St Martin’s
Press.
Bernardini, S.; Fagnani, F.; and Franco, S. 2020. An Op-
timization Approach to Robust Goal Obfuscation. In Pro-
ceedings of the International Conference on Principles of
Knowledge Representation and Reasoning, volume 17, 119–
129.
Boyan, J.; and Moore, A. 1994. Generalization in reinforce-
ment learning: Safely approximating the value function. Ad-
vances in neural information processing systems, 7.
Chakraborti, T.; Kulkarni, A.; Sreedharan, S.; Smith, D. E.;
and Kambhampati, S. 2019. Explicability? legibility? pre-
dictability? transparency? privacy? security? the emerging
landscape of interpretable agent behavior. In Proceedings
of the international conference on automated planning and
scheduling, volume 29, 86–96.
Davis, A. L. 2016. Deception in game theory: a survey and
multiobjective model. Technical report, Air Force Institute
of Technology Wright-Patterson AFB OH.
Jeon, H. J.; Milli, S.; and Dragan, A. D. 2020. Reward-
rational (implicit) choice: A unifying formalism for reward
learning. In Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and Acting in Partially Observable Stochastic Do-
mains. Artif. Intell., 101(1-2): 99–134.
Keren, S.; Gal, A.; and Karpas, E. 2016. Privacy Preserv-
ing Plans in Partially Observable Environments. In IJCAI,
3170–3176.
Keren, S.; Gal, A.; and Karpas, E. 2021. Goal recognition
design-survey. In Proceedings of the Twenty-Ninth Inter-
national Conference on International Joint Conferences on
Artificial Intelligence, 4847–4853.
Kulkarni, A.; Klenk, M.; Rane, S.; and Soroush, H. 2018.
Resource bounded secure goal obfuscation. In AAAI Fall
Symposium on Integrating Planning, Diagnosis and Causal
Reasoning.
Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2019. A
unified framework for planning in adversarial and coopera-
tive environments. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, 2479–2487.

Kulkarni, A.; Srivastava, S.; and Kambhampati, S. 2020.
Signaling Friends and Head-Faking Enemies Simultane-
ously: Balancing Goal Obfuscation and Goal Legibility.
In Proceedings of the 19th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS
’20, 1889–1891. Richland, SC: International Foundation
for Autonomous Agents and Multiagent Systems. ISBN
9781450375184.
Letchford, J.; and Vorobeychik, Y. 2013. Optimal interdic-
tion of attack plans. In AAMAS, 199–206.
Liu, Z.; Yang, Y.; Miller, T.; and Masters, P. 2021. Decep-
tive reinforcement learning for privacy-preserving planning.
arXiv preprint arXiv:2102.03022.
Masters, P.; Kirley, M.; and Smith, W. 2021. Extended goal
recognition: a planning-based model for strategic deception.
In Proceedings of the 20th International Conference on Au-
tonomous Agents and MultiAgent Systems, 871–879.
Masters, P.; and Sardina, S. 2017. Deceptive Path-Planning.
In IJCAI, 4368–4375.
Masters, P.; Smith, W.; Sonenberg, L.; and Kirley, M. 2020.
Characterising Deception in AI: A Survey. In Deceptive AI,
3–16. Springer.
Ornik; and Topcu. 2018. Deception in Optimal Control. In
56th Annual Allerton Conference on Communication, Con-
trol, and Computing, 821–828.
Puterman, M. L. 1990. Markov decision processes. Hand-
books in operations research and management science, 2:
331–434.
Senator, M. T. 2019. Science of Artificial Intelligence and
Learning for Open-world Novelty (SAIL-ON).
Smith, T.; and Simmons, R. 2012. Heuristic search value
iteration for POMDPs. arXiv preprint arXiv:1207.4166.
Speicher, P.; Steinmetz, M.; Backes, M.; Hoffmann, J.; and
Künnemann, R. 2018. Stackelberg planning: Towards effec-
tive leader-follower state space search. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32.
Sreedharan, S.; Kulkarni, A.; Smith, D. E.; and Kambham-
pati, S. 2021. A Unifying Bayesian Formulation of Mea-
sures of Interpretability in Human-AI Interaction. In Pro-
ceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal,
Canada, 19-27 August 2021, 4602–4610. ijcai.org.
Sutton, R. S.; Precup, D.; and Singh, S. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial intelligence, 112(1-
2): 181–211.
Zabell, S. L. 1992. Predicting the unpredictable. Synthese,
90(2): 205–232.

